• Title/Summary/Keyword: Co silicide

Search Result 117, Processing Time 0.023 seconds

VOID DEFECTS IN COBALT-DISILICIDE FOR LOGIC DEVICES

  • Song, Ohsung;Ahn, Youngsook
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.3
    • /
    • pp.389-392
    • /
    • 1999
  • We employed cobalt-disilicide for high-speed logic devices. We prepared stable and low resistant $CoSi_2$ through typical fabrication process including wet cleaning and rapid thermal process (RTP). We sputtered 15nm thick cobalt on the wafer and performed RTP annealing 2 times to obtain 60nm thick $CoSi_2$. We observed spherical shape voids with diameter of 40nm in the surface and inside $CoSi_2$ layers. The voids resulted in taking over abnormal junction leakage current and contact resistance values. We report that the voids in $CoSi_2$ layers are resulted from surface pits during the ion implantation previous to deposit cobalt layer. Silicide reaction rate around pits was enhanced due to Gibbs-Thompson effects and the volume expansion of the silicidation of the flat active regime trapped dimples. We confirmed that keeping the buffer oxide layer during ion implantation and annealing the silicon surface after ion implantation were required to prevent void defects in CoSi$_2$ layers.

  • PDF

Phase sequence in Codeposition and Solid State Reaction of Co-Si System and Low Temperature Epitaxial Growth of $CoSi_2$ Layer (Co-Si계의 동시증착과 고상반응시 상전이 및 $CoSi_2$ 층의 저온정합성장)

  • 박상욱;심재엽;지응준;최정동;곽준섭;백홍구
    • Journal of the Korean Vacuum Society
    • /
    • v.2 no.4
    • /
    • pp.439-454
    • /
    • 1993
  • The phase sequence of codeposited Co-Si alloy and Co/si multilayer thin film was investigated by differential scanning calormetry(DSC) and X-ray diffraction (XRD) analysis, The phase sequence in codeposition and codeposited amorphous Co-Si alloy thin film were CoSilongrightarrow Co2Si and those in Co/Si multilayer thin film were CoSilongrightarrowCo2Silongrightarrow and CoSilongrightarrowCo2Si longrightarrowCoSilongrightarrowCoSi2 with the atomic concentration ration of Co to Si layer being 2:1 and 1:2 respectively. The observed phase sequence was analyzed by the effectvie heat of formatin . The phase determining factor (PDF) considering structural facotr in addition to the effectvie heat of formation was used to explain the difference in the first crystalline phase between codeposition, codeposited amorphous Co-Si alloy thin film and Co/Si multilayer thin film. The crystallinity of Co-silicide deposited by multitarget bias cosputter deposition (MBCD) wasinvestigated as a funcion of deposition temperature and substrate bias voltage by transmission electron microscopy (TEM) and epitaxial CoSi2 layer was grown at $200^{\circ}C$ . Parameters, Ear, $\alpha$(As), were calculate dto quantitatively explain the low temperature epitaxial grpwth of CoSi2 layer. The phase sequence and crystallinity had a stronger dependence on the substrate bias voltage than on the deposition temperature due to the collisional daxcade mixing, in-situ cleannin g, and increase in the number of nucleation sites by ion bombardment of growing surface.

  • PDF

Fabrication of Heating Actuator Using Cobalt Silicided Thin Films (코발트실리사이드 박막을 이용한 발열 엑츄에이터의 제작)

  • 노영규;장호정
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.05a
    • /
    • pp.234-237
    • /
    • 2002
  • The cobalt silicide was formed OH POly-Si/SiO$_2$/Si Substrates by the E-beam evaporation of Co metal and rapid thermal annealing method for the application of heating actuators. The most stable CoSi$_2$crystal was obtained at temperature of above $700^{\circ}C$ for 20 sec in $N_2$ambient. From the SEM observation, the thickness and diameter of the heating elements were about $1{\mu}{\textrm}{m}$ and $50{\mu}{\textrm}{m}$, respectively. Temperature resistance coefficient of heating elements was found to be about 0.0014($1/^{\circ}C$) with $30~35\Omega$ of resistance.

  • PDF

Formation and Growth of Epitaxial $CoSi_2$ Layer by Reactive Chemical Vapor Deposition (반응성 화학기상증착법을 이용한 에피택셜 $CoSi_2$ 박막의 형성 및 성장에 관한 연구)

  • Lee, Hwa-Seong;Lee, Hui-Seung;An, Byeong-Tae
    • Korean Journal of Materials Research
    • /
    • v.10 no.11
    • /
    • pp.738-741
    • /
    • 2000
  • Univorm epitaxial $CoSi_2$layers have been grown in situ on a (100) Si substrate at temperatures near$ 600^{\circ}C$ by reactive chemical vapor deposition of cyclopentadienyl dicarbonyl cobalt, (Co(η(sup)5-C(sub)5H(sub)5) ($CO_2$). The growth kinetics of an epitaxial $CoSi_2$layer on al Si(100) substrate was investigated at temperatures ranging from 575 to $650^{\circ}C$. In initial deposition stage, plate-like discrete $CoSi_2$spikes were nucleated along the <111> directions in (100) Si substrate with a twinned structure. The discrete $CoSi_2$plates with both {111} and (100) planes grew into an epitaxial layer with a flat interface on (100) Si. For epitaxial $CoSi_2$growth on (100) Si, the activation energy of the parabolic growth was found to be 2.82 eV. The growth rate seems to be controlled by the diffusion of Co through the $CoSi_2$layer.

  • PDF

A Study on the Formation of Cobalt Policide Gate Electrode (코발트 폴리사이드 게이트전극 형성에 관한 연구)

  • Shim, Hyun-Sang;Koo, Bon-Cheol;Joung, Yeon-Sil;Bae, Kyoo-Sik
    • Korean Journal of Materials Research
    • /
    • v.8 no.6
    • /
    • pp.499-504
    • /
    • 1998
  • For the formation of cobalt polycide gate electrode, CoSi, was grown on columnar poly-Si, granular poly-Si or amorphous Si by depositing either Co monolayer or Co/Ti bilayer and its thermal stability was compared to study effects of the substrate crystallinity and the silicide formation method. When specimens were rapidly heat-treated at 90$0^{\circ}C$ up to 600 seconds, using amorphous Si or Co/Ti on all substrates improved the thermal stability. This was attributed to the uniform chemical composition of initial CoSi, and its smooth interface with the substrates, induced by smooth and clean Si surface and delayed Co diffusion. The main factors determining the thermal stability were found to be composition uniformity and smooth interface of $CoSi_2$, intially formed at the early stage of the heat-treatment.

  • PDF

Catalytic Properties of the Cobalt Silicides for a Dye-Sensitized Solar Cell (염료감응형 태양전지용 코발트실리사이드들의 촉매 물성)

  • Kim, Kwangbae;Noh, Yunyoung;Song, Ohsung
    • Korean Journal of Materials Research
    • /
    • v.26 no.8
    • /
    • pp.401-405
    • /
    • 2016
  • The cobalt silicides were investigated for employment as a catalytic layer for a DSSC. Using an E-gun evaporation process, we prepared a sample of 100 nm-thick cobalt on a p-type Si (100) wafer. To form cobalt silicides, the samples were annealed at temperatures of $300^{\circ}C$, $500^{\circ}C$, and $700^{\circ}C$ for 30 minutes in a vacuum. Four-point probe, XRD, FE-SEM, and CV analyses were used to determine the sheet resistance, phase, microstructure, and catalytic activity of the cobalt silicides. To confirm the corrosion stability, we also checked the microstructure change of the cobalt silicides after dipping into iodide electrolyte. Through the sheet resistance and XRD results, we determined that $Co_2Si$, CoSi, and $CoSi_2$ were formed successfully by annealing at $300^{\circ}C$, $500^{\circ}C$, and $700^{\circ}C$, respectively. The microstructure analysis results showed that all the cobalt silicides were formed uniformly, and CoSi and $CoSi_2$ layers were very stable even after dipping in the iodide electrolyte. The CV result showed that CoSi and $CoSi_2$ exhibit catalytic activities 67 % and 54 % that of Pt. Our results for $Co_2Si$, CoSi, and $CoSi_2$ revealed that CoSi and $CoSi_2$ could be employed as catalyst for a DSSC.

Low resistivity Ohmic Co/Si/Co contacts to n-type 4H-SiC (낮은 접촉 저항을 갖는 Co/Si/co n형 4H-SiC의 오옴성 접합)

  • Kim, C.K.;Yang, S.J.;Lee, J.H.;Cho, N.I.;Jung, K.H.;Kim, N.K.;Kim, E.D.;Kim, D.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.764-768
    • /
    • 2002
  • Characteristics of ohmic Co/Si/Co contacts to n-type 4H-SiC are investigated systematically. The ohmic contacts were formed by annealing Co/Si/Co sputtered sequentially. The annealings were performed at $800^{\circ}C$ using RTP in vacuum ambient and $Ar:H_2$(9:1) ambient, respectively. The specific contact resistivity$(\rho_c)$, sheet resistance$(R_s)$, contact resistance$(R_c)$, transfer length$(L_T)$ were calculated from resistance$(R_T)$ versus contact spacing(d) measurements obtained from TLM(transmission line method) structure. While the resulting measurement values of sample annealed at vacuum ambient were $\rho_c=1.0{\tiimes}10^{-5}{\Omega}cm^2$, $R_c=20{\Omega}$ and $L_T$ = 6.0 those of sample annealed at $Ar:H_2$(9:1) ambient were $\rho_c=4.0{\tiimes}10^{-6}{\Omega}cm^2$, $R_c=4.0{\Omega}$ and $L_T$ = 2.0. The physical properties of contacts were examined using XRD and AES. The results showed that cobalt silicide was formed on SiC and Co was migrated into SiC.

  • PDF

Co/Ti Bilayer Silicidation on the $\textrm{p}^{+}$-Si Region Implanted with High Dose of $\textrm{BF}_2$ ($\textrm{BF}_2$가 고농도로 이온주입된 $\textrm{p}^{+}$-Si 영역상에 Co/Ti 이중막 실리사이드의 형성)

  • Jang, Ji-Geun;Sin, Cheol-Sang
    • Korean Journal of Materials Research
    • /
    • v.9 no.2
    • /
    • pp.168-172
    • /
    • 1999
  • We have studied the formation of Co/Ti bilayer silicide with low resistivity and good thermal stability on the heavily boron doped $\textrm{p}^{+}$-Si region. In this paper, Co/Ti bilayer silicides were fabricated by depositing Co($150\AA$)/Ti($50\AA$) films on the clean $\textrm{p}^{+}$-Si substrates in an E-beam evaporator and performing the two step RTA process (first annealing: 650$50^{\circ}C$/20sec, second annealing: $800^{\circ}C$/20sec) in a $N_2$ambient with the pressure of $\textrm{10}^{-1}$atm. Co/Ti bilayer silicides obtained from our experiments exhibited the low resistivity of about $18\mu\Omega$-cm and the uniform thickness of about $500\AA$ without change of sheet resistance and agglomeration under the long post0annealing time up to $1000^{\circ}C$.

  • PDF

Fabrication of New Co-Silicided Si Field Emitter Array with Long Term Stability (Co-실리사이드를 이용한 새로운 고내구성 실리콘 전계방출소자의 제작)

  • Chang, Gee-Keun;Kim, Min-Young;Jeong, Jin-Cheol
    • Korean Journal of Materials Research
    • /
    • v.10 no.4
    • /
    • pp.301-304
    • /
    • 2000
  • A new triode type Co-silicided Si FEA(field emitter array) was realized by Co-silicidation of Co coated Si FEA and its field emission properties were investigated. The field emission properties of the fabricated device through the unit pixel with $45{\times}45$ tip array in the area of $250{\mu\textrm{m}}{\times}250{\mu\textrm{m}}$ under high vacuum condition of $10^{-8}Torr$ were as follows : the turn-on voltage was about 35V and the anode current was about $1.2\mu\textrm{A}(0.6㎁/tip)$ at the bias of $V_A=500V\;and\; V_G=55V$. The fabricated device showed the stable electrical characteristics without degradation of field emission current for the long term operation except for the initial transient state. The low turn-on voltage and the high current stability of the Co-silicided Si FEA were due to the thermal and chemical stability and the low work function of silicide layer formed at the surface of Si tip.

  • PDF

Metal-induced Grown Thin Crystalline Si films for Solar Cells (박막 실리콘 결정화를 이용한 태양 전지)

  • Kim, Joon-Dong;Yoon, Yeo-Hwan;Lee, Eung-Sug;Han, Chang-Soo;Anderson, Wayne A.
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.220-221
    • /
    • 2007
  • 금속 촉매 성장 (Metal-induced growth) 를 이용하여, 마이크로 사이즈의 결정질 (Microcrystalline) 박막 실리콘 (Silicon, Si)을 성장하였다. 금속 촉매로서는 코발트, 니켈, 코발트/니켈 복합물질(Co, Ni, or Co/Ni) 이 사용되었으며, 실리콘과 반응하여 실리사이드 (Silicide) 층을 형성한다. 이러한 실리사이드 층은 실리콘과 격자 거리가 유사하여 (Little lattice mismatch), 그 위에 실리콘 박막을 성장하기 위한 모체 (Template) 가 된다. XRD (X-ray diffraction) 분석을 통하여, 실리사이드 ($CoSi_2$ or $NiSi_2$) 의 형성과 성장된 박막 실리콘의 결정성을 연구하였다. 이러한 박막을 이용하여, 쇼트키 태양전지 (Schottky Solar cell) 에 응용하였다. 코발트/니켈 복합물질을 이용하였을 경우에 10.6mA/$cm^2$ 단락전류를 얻었으며, 이는 코발트만을 이용한 경우보다 10 배만큼 증가하였다. 이러한 실리사이드를 매개로한 박막 실리콘의 성장은 공정상에서의 열부담 (Thermal budget) 을 줄일 수 있으며, 대면적 응용에 큰 가능성을 가지고 있다.

  • PDF