• 제목/요약/키워드: Co oxide nanostructure

검색결과 16건 처리시간 0.022초

Interfacial Natures and Controlling Morphology of Co Oxide Nanocrystal Structures by Adding Spectator Ni Ions

  • Gwag, Jin-Seog;Sohn, Young-Ku
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권2호
    • /
    • pp.505-510
    • /
    • 2012
  • Cobalt oxide nanostructure materials have been prepared by adding several concentrations of spectator Ni ions in solution, and analyzed by electron microscopy, X-day diffraction, calorimetry/thermogravimetric analysis, UV-vis absorption, Raman, and X-ray photoelectron spectroscopy. The electron microscopy results show that the morphology of the nanostructures is dramatically altered by changing the concentration of spectator ions. The bulk XRD patterns of $350^{\circ}C$-annealed samples indicate that the structure of the cobalt oxide is all of cubic Fd-3m $Co_3O_4$, and show that the major XRD peaks shift slightly with the concentration of Ni ions. In Raman spectroscopy, we can confirm the XRD data through a more obvious change in peak position, broadness, and intensity. For the un-sputtered samples in the XPS measurement process, the XPS peaks of Co 2p and O 1s for the samples prepared without Ni ions exhibit higher binding energies than those for the sample prepared with Ni ions. Upon $Ar^+$ ion sputtering, we found $Co_3O_4$ reduces to CoO, on the basis of XPS data. Our study could be further applied to controlling morphology and surface oxidation state.

Synthesis and Biodistribution of Cat's Eye-shaped [57Co]CoO@SiO2 Nanoshell Aqueous Colloids for Single Photon Emission Computed Tomography (SPECT) Imaging Agent

  • Kwon, Minjae;Park, Jeong Hoon;Jang, Beom-Su;Jung, Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권8호
    • /
    • pp.2367-2370
    • /
    • 2014
  • "Cat's eye"-shaped $[^{57}Co]CoO@SiO_2$ core-shell nanostructure was prepared by the reverse microemulsion method combined with radioisotope technique to investigate a potential imaging agent for a single photon emission computed tomography (SPECT) in nuclear medicine. The core cobalt oxide nanorods were obtained by thermal decomposition of $Co-(oleate)_2$ precursor from radio isotope Co-57 containing cobalt chloride and sodium oleate. The $SiO_2$ coating on the surface of the core cobalt oxide nanorods was produced by hydrolysis and a condensation reaction of tetraethylorthosilicate (TEOS) in the water phase of the reverse microemulsion system. In vivo test, micro SPECT image was acquired with nude mice after 30 min of intravenous injection of $[^{57}Co]CoO@SiO_2$ core-shell nanostructure.

Nanopatterning of Self-assembled Transition Metal Nanostructures on Oxide Support for Nanocatalysts

  • Van, Trong Nghia;Park, Jeong-Young
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.211-211
    • /
    • 2011
  • Nanostructures, with a diversity of shapes, built on substrates have been developed within many research areas. Lithography is one powerful, but complex, technique to make structures at the nanometer scale, such as platinum nanowires for studying CO catalytic reactions [1], or aluminum nanodisks for studying the plasmon effect [2]. In this work, we approach a facile method to construct nanostructures using noble metals on a titania thin film by using self-assembled structures as a pattern. Here, a large-scale silica monolayer is transferred to the titania thin film substrates using a Langmuir-Blodgett trough, followed by the deposition of a thin transition metal layer. Owing to the hexagonal close-packed structure of the silica monolayer, we would obtain a metal nanostructure that includes separated metallic triangles (islands) after removing the patterning silica beads. This nanostructure can be employed to investigate the role of metal-oxide interfaces in CO catalytic reactions by changing the patterning silica particles with different sizes or by replacing the oxide support. The morphology and chemical composition of the structure can be characterized by scanning electron microscopy, atomic force microscopy and X-ray photoelectron spectroscopy. In addition, we modify these islands to a connected island structure by reducing the silica size of the patterning monolayer, which is utilized to generating hot electron flow based on the localized surface plasmon resonance effect of the metal nanostructures.

  • PDF

임프린팅법을 이용한 YSnO 박막의 표면 이방성 획득과 액정 배향 특성 연구 (Homogeneous Liquid Crystal Alignment on Anisotropic YSnO Surface by Imprinting Method)

  • 오병윤
    • 한국전기전자재료학회논문지
    • /
    • 제33권1호
    • /
    • pp.21-24
    • /
    • 2020
  • We investigated a solution-driven Yttrium Tin Oxide (YSnO) film that was imprinted using a parallel nanostructure as a liquid crystal (LC) alignment layer. The imprinting process was conducted at the annealing temperature of 100℃. To evaluate the effect of this process, we conducted surface analyses including atomic force microscopy (AFM). During imprinting, the surface roughness was reduced, and anisotropic characteristics were observed. Planar LC alignment was observed at a pretilt angle of 0.22° on YSnO film. Surface anisotropy induced by imprinting method forces LC to align along the direction of the parallel nanostructure, which is an alternative to conventional polyimide treated using a rubbing process.

기계화학적방법에 의한 나노구조 WC/Co 복합 분말의 제조에 관한 연구 (A Study On Synthesis of Nanostructured WC/Co composite Powders by Mechanochemical process)

  • 권대환;안인섭;하국현;김병기;김유영
    • 한국분말재료학회지
    • /
    • 제9권3호
    • /
    • pp.167-173
    • /
    • 2002
  • A new approach to produce nanostructured WC/Co composite powders by a mechanochemical process was made to improve the mechanical properties of advanced hardmetals. Homogeneous spherical W-Co salt powders were made by spray drying of aqueous solution from ammonium metatungstate($(NH_4)_6(H_2W_{12}O_{40})\cdo4H_2O$,AMT) and cobalt nitrate hexahydrate (Co(NO$_3$)$_2$.6$H_2O$). spray dried W-Co salt powders were calcined for 1 hr at $700^{\circ}C$ in atmosphere of air. The oxide powder was mixed with carbon black by ball milling and this mixture was heated with various temperatures and times in $H_2$. The $WO_3/CoWO_4$ composite oxide powders were obtained by calcinations at $700^{\circ}C$. The primary particle size of W/Co composite oxide powders by SEM was 100 nm. The reduction/carburization time decreased with increasing temperatures and carbon additions. The average size of WC particle carburized at $800^{\circ}C$ by TEM was smaller than 50 nm.

Zinc Oxide Wire-Like Thin Films as Nitrogen Monoxide Gas Sensor

  • Hung, Nguyen Le;Kim, Hyojin;Kim, Dojin
    • 한국재료학회지
    • /
    • 제25권7호
    • /
    • pp.358-363
    • /
    • 2015
  • We present an excellent detection for nitrogen monoxide (NO) gas using polycrystalline ZnO wire-like films synthesized via a simple method combined with sputtering of Zn metallic films and subsequent thermal oxidation of the sputtered Zn nanowire films in dry air. Structural and morphological characterization revealed that it would be possible to synthesize polycrystalline hexagonal wurtzite ZnO films of a wire-like nanostructure with widths of 100-150 nm and lengths of several microns by controlling the sputtering conditions. It was found from the gas sensing measurements that the ZnO wire-like thin film gas sensor showed a significantly high response, with a maximum value of 29.2 for 2 ppm NO at $200^{\circ}C$, as well as a reversible fast response to NO with a very low detection limit of 50 ppb. In addition, the ZnO wire-like thin film gas sensor also displayed an NO-selective sensing response for NO, $O_2$, $H_2$, $NH_3$, and CO gases. Our results illustrate that polycrystalline ZnO wire-like thin films are potential sensing materials for the fabrication of NO-sensitive high-performance gas sensors.

스테인리스 스틸의 표면 산화피막 성장과 내부식성 상관관계 (Correlation of Surface Oxide Film Growth with Corrosion Resistance of Stainless Steel)

  • 박영주;유진석;심성구;정찬영
    • Corrosion Science and Technology
    • /
    • 제20권3호
    • /
    • pp.152-157
    • /
    • 2021
  • Stainless steel is a metal that does not generate rust. Due to its excellent workability, economic feasibility, and corrosion resistance, it is used in various industrial fields such as ships, piping, nuclear power, and machinery. However, stainless steel is vulnerable to corrosion in harsh environments. To solve this problem, its corrosion resistance could be improved by electrochemically forming an anodized film on its surface. In this study, 316L stainless steel was anodized at room temperature with ethylene glycol-based 0.1 M NH4F and 0.1M H2O electrolyte to adjust the thickness of the oxide film using different anodic oxidation voltages (30 V, 50 V, and 70 V) with time control. The anodic oxidation experiment was performed by increasing the time from 1 hour to 7 hours at 2-hour intervals. Corrosion resistance according to the thickness of the anodic oxide film was observed. Electrochemical corrosion behavior of oxide films was investigated through polarization experiments.

3차원 ZnO 나노구조체 가스센서 (3-dimensional nanostructured ZnO gas sensor)

  • 박용욱;신현용;윤석진
    • 센서학회지
    • /
    • 제19권5호
    • /
    • pp.356-360
    • /
    • 2010
  • Due to the high surface-to-volume ratio, the 3-dimensional(3D) nanostructures of metal oxides are regarded as the best candidate materials for the chemical gas sensors. Here we have synthesised flower-like 3D zinc oxide nanostructures through a simple hydrothermal route. Specific surface area of the 3D zinc oxide nanostructures synthesised in different pH values from 9.0 to 12.0 were evaluated by using a BET analyzer and the results were compared with that of a zinc oxide thin film fabricated by rf sputtering. Using interdigitated electrodes, superior CO gas sensing properties of the 3D zinc oxide nanostructures on the ZnO thin film to those of the ZnO thin film were demonstrated.

나노복합산화물 전극의 제조 및 수퍼커패시터로써의 응용 (Preparation of nano composite metal-oxide electrode and its application for superrcapacitor)

  • 김홍일;이주원;김상길;육경창;박수길
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 하계학술대회 논문집 Vol.3 No.2
    • /
    • pp.801-804
    • /
    • 2002
  • Electrochemical capacitors are becoming attractive energy storage systems particularly for applications involving high power requirements such as hybrid systems consisting of batteries and electrochemical capacitors for electric vehicle propulsion. Both of amorphous cobalt oxide and manganese dioxide were prepared by sol-gel process reported in our previous work. Nanostructured supramolecular oligomer of 1,5-diaminoanthraquinone(DAAQ) coated metal oxides were successfully prepared by electrochemical oxidation from an acidic non-aqueous medium. We established process parameters of the technique for the formation of nano-structured materials. Furthermore, improved the capacitive properties of the nano structured metal oxide electrodes using controlled solution chemistry. $CoO_2$ and $MnO_2$-based composite electrode showed relatively good electrochemical behaviors in acidic electrolyte system with respect to specific capacity and scan rate dependency.

  • PDF

전기화학적 석출을 통해 ITO 표면에 형성한 덴드라이트 백금 구조의 전기화학적 촉매 활성 (Electrocatalytic Activity of Dendritic Platinum Structures Electrodeposited on ITO Electrode Surfaces)

  • 최수희;최강희;김종원
    • 전기화학회지
    • /
    • 제17권4호
    • /
    • pp.209-215
    • /
    • 2014
  • 전기화학적 석출 방법을 이용하여 indium tin oxide 표면에 백금 나노구조를 형성하고 총 석출전하량을 조절하여 형성되는 나노구조의 변화에 따른 전기화학적 메탄올 산화 반응과 산소 환원반응에 대한 촉매 활성의 변화를 관찰하였다. 석출 전하량의 변화에 따라 생성되는 백금 나노구조체 표면의 특성을 주사 전자 현미경, 전기화학적 표면적 측정, X-선 회절법, 일산화탄소 벗김분석을 통해 규명하고 전기화학적 촉매 활성과의 연계성을 조사하였다. 전기화학적 촉매 활성은 형성된 백금 나노구조에 따라 달라지는데, 석출 전하량 $0.45C\;cm^{-2}$에 해당하는 백금 나노구조에서 가장 우수한 촉매 활성이 관찰되었다. 전하량에 따른 표면적의 변화보다 형성된 구조적 특이성과 결정면이 촉매 활성에 많은 영향을 미쳤다. 세밀한 백금 나노구조의 변화에 따른 전기화학적 촉매 활성 변화에 관한 본 연구결과는 보다 우수한 촉매 시스템을 고안하는 연구에 도움이 될 것이다.