• Title/Summary/Keyword: Co ferrite

Search Result 365, Processing Time 0.027 seconds

Structural and Magnetic Properties of (CoFe2O4)0.5(Y3Fe5O12)0.5 Powder

  • Lee, Jae-Gwang;Chae, Kwang-Pyo;Lee, Young-Bae;Lee, Sung-Ho
    • Journal of Magnetics
    • /
    • v.10 no.3
    • /
    • pp.80-83
    • /
    • 2005
  • Cobalt ferrite and garnet powders were grown using a conventional ceramic method in two different ways for understanding the magnetic interaction between structurally different materials. Structures of these powders were investigated by using an X-ray diffractometer (XRD) and the magnetic interaction between iron ions and the magnetic properties of the powders were measured by a $M\ddot{o}ssbauer$ spectroscopy and a vibrating sample magnetometer (VSM), respectively. The result of the XRD measurement showed that the annealing temperature higher than $1200^{\circ}C$ was necessary to grow a $(CoFe_2O_4)_{0.5}(Y_3Fe_5O_{12})_{0.5}$ powder. $M\ddot{o}ssbauer$ spectra for the powders grown separately and mixed mechanically consisted of sub-spectra of cobalt ferrite and garnet, however, powders annealed together had an extra sub-spectrum, which was related with the magnetic interaction between the grain surface of cobalt ferrite and the one of the garnet. In case of annealing the powders at the temperature large enough to crystallize them, raw chemicals became fine cobalt ferrite and garnet particles at first and then these fine particles were aggregated and formed large grains of ferrite powders. The result of the VSM measurement showed that the powders prepared at $1200^{\circ}C$ had the similar saturation magnetization and the coercivity regardless of the preparation method.

Study on Low-Temperature sintering of Co2Z type Ba ferrites for chip inductor (Chip inductor용 Co2Z type Ba-ferrite의 저온소결에 관한 연구)

  • 조균우;한영호;문병철
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.5
    • /
    • pp.195-200
    • /
    • 2002
  • Low temperature sintering of Co$_2$Z type Ba ferrites with various oxide additives has been studied. Co$_2$Z phase was obtained by 2 step calcination and XRD peaks showed a good agreement with the peaks of the standard Co$_2$Z phase, except for some minor extra peaks. ZnO-B$_2$O$_3$ glass, ZnO-B$_2$O$_3$ and CuO, ZnO-B$_2$O$_3$ and Bi$_2$O$_3$, and ZnO-Bi$_2$O$_3$ glass were added to lower sintering temperatures. Specimens were sintered at the temperature range between 900 $^{\circ}C$ and 1000 $^{\circ}C$. In the single addition of ZnO-B$_2$O$_3$ glass, the specimen with 7.5 wt% showed the highest shrinkage. Specimens with complex addition of ZnO-B$_2$O$_3$ glass with CuO or Bi$_2$O$_3$ showed higher shrinkages and initial permeabilities than single addition of ZnO-B$_2$O$_3$ glass. Shrinkages and initial permeabilities of the specimens with ZnO-Bi$_2$O$_3$ glass were higher than those of ZnO-B$_2$O$_3$ glass addition.

Purification of Waste Acid and Manufacture of Complex Oxide and Mn-Ferrite Powder by Co-Roasting Process (폐산의 정제 기술 및 분무 배소법에 의한 복합 산화물과 Mn-Ferrite 분말의 제조)

  • 유재근;김정석;민병구;성낙일
    • Resources Recycling
    • /
    • v.7 no.4
    • /
    • pp.64-75
    • /
    • 1998
  • The purpose of this study is to produce high putity composite powder composed of Fe-oxide, Mn-oxide and Mn-ferrite having superior homogencity in composition and particle size distribution by co-roasting process. Binary component metal (Fe, Mn) chloride solutions were produced by dissolving mill scale and ferro-mangancse alloy in hydrochloric acid. These chloride solutions contained the impurities such as SiO$_{2}$, P, Al, Ca and Na, which were originated from the Fe/Mn source materials. The neutralization and polymeric coagulant method were adoped to refine the hydrochloric liquor. When pH is far below the isoelectric point (pH 2-3), the SiO$_{2}$ was the most effectively reduced element, while other impurities remained unchanged. By increasing pH above 3, most of the impurities could be reduced effectively due to the coprecipitation reaction. The polymeric coagulants such as poly vinyl alcohol, resin amine and ammonium molybdate were found to have no effect on the spray roaster designed by the authors. The produced oxide powders were confirmed to be mixtures of Fe-oxide, Mn-oxide and mn-ferrite. the powders were homogeneously mixed and the particle size increased sleeply with increasing co-roasting temperature.

  • PDF

Electromagnetic Properties of Mo-Zn ferrite for Low Voltage and High Current Transformer Application With Using Multi cores (다중 코어를 이용한 저전압, 대전류 변압기용 Mn-Zn ferrite의 전자기적 특성)

  • Kim, Hyun-Sik;Lee, Hae-Yon;Kim, Jong-Ryung;Huh, Jeong-Seob;Lee, Jun-Hui;An, Yong-Woon;Oh, Young-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.294-295
    • /
    • 2005
  • 다중 코어를 이용한 대전류 변압기용 Mn-Zn ferrite를 제조하고 전자기적 특성을 분석하였으며, 제조된 자심재료를 이용하여 변압기를 제조하고 전원장치에 탑재하여 효율특성을 분석하였다. ZnO의 몰비가 증가할수록 혼합 스피넬의 형성을 통한 보아 자자의 증가로 인해 투자율은 증가하고 상대적으로 전력손실이 감소하여 $Fe_2O_3$ : MnO : ZnO = 53 : 36 : 11 mo\% 일 때 가장 우수한 특성을 나타냈고, 열처리 공정의 승온 과정에서부터 산소 분압을 제어하고 최적의 대기압 상수를 산출함으로써 Zn-loss 현상을 최소화하여 ZnO 11 mol%, 대기압 상수 7.7일 때 투자율 2350, 밀도 4.9 $g/cm^3$, 비저항 480 ${\Omega}cm$, 300 mT의 최대 자속 밀도 특성을 갖는 우수한 자심 재료를 개발하였다. 그리고 최소 손실 온도를 $90^{\circ}C$ 이하로 감소시켰으며 100 kHz에서 250 $kW/m^3$의 낮은 전력손실을 나타냈다. 또한 개발된 자심재료를 이용하여 제조된 전원장치는 30~80A의 출력 전류에서 85% 이상의 고효율을 얻었다.

  • PDF

Study on the Manufacturing Process of Complex Oxide by Co-Roasting Process and Magnetic Properties Mn-Zn Ferrite (분무 배소법에 의한 복합산화물의 제조공정 및 Mn-Zn ferrite의 자기 특성에 관한연구)

  • 유재근;이경익;이성수
    • Resources Recycling
    • /
    • v.8 no.4
    • /
    • pp.45-56
    • /
    • 1999
  • The purpose of tlus sludy was to preparc raw material powder for Mn-Zn iclrile, h m mined mill scale and fero-Mn, usins a co-spray roasting process The mill scale and ferra-Mn uscd in this raalins process was rcf~nedb y mesn-ns of a slxc~apl rxcss ~nvolvinm~a te~ialsc ontalning imp~u-ltleso r less than 100 pprn In this study an effeclive spray roaster system. wllich produces fme complex oxide powder, collects produccd ~owder.,m d prcvel~tse ~~llssiooifi HCI gas. was also manufactured. By means of spray~ngp urifcd raw malerial solu~lionl nln a manufacued high tcmpervture rumace. &-ferrite powder and a comnpleu o ~ d e powder of Fe,O; and M,x203 were manufactured. The chmcterlstics of the composllion. surface urca, and p'miicle size dismbulion or the produced powder were exmined. ptoduced powdcr was then ~ m e dwi tli ZnO powder. aid olher addilives of defined cornposnion, and Mn-Zn femite cares werc praiuccil by meuns of Sorlning and closely controlled sintering processes. The magpelic p~oprlieso f c olo~ss, initlal permeability. mauin~u~mnn agnehc flux. coz~civcr orcc and residual magnccic flux for the above cores we,= measured, and fmm Il~ase I-csulls the eflicacy of lhe co-spray roasling pncess to pl.ellare raw material powder lor Mn-Zn ferntc was established

  • PDF

Magnetic and Microwave Absorbing Properties of Ti-and Co-Substituted Barium Ferrite (BaFe12-2X TiXCoXO19)

  • Han-Shin Cho;Yong-Jin Kim;Sung-Soo Kim
    • Journal of Magnetics
    • /
    • v.4 no.2
    • /
    • pp.65-68
    • /
    • 1999
  • The M-type barium ferrite ($BaFe_{12}O_{19}$) is well known magnetic material to be used as a permanent magnet due to its strong uniaxial anisotropy. The substitution of nonmagnetic $Ti^{+4}$ and magnetically weak $Co+^2ion for Fe^{+3}$ to its strong uniaxial anisotropy. The substitution of nonmagnetic $Ti^{+4}$ and magnetically weak $Co+^2ion for Fe^{+3}$ sublattices reduces the uniaxial anisotropy and those compounds open a new application field of noise suppressor at high frequencies. In this study, the magnetic and microwave absorbing properties are investigated in Ti-and Co-substituted barium ferrites ($BaFe_{12-2X} Ti_XCo_XO_{19}$). The saturated magnetization decreases linearly with the substitution of Ti and Co. The rapid drop in coercive force is observed with Ti and Co substitution upto x=1.2. The magnetic permeability spectrum shows the natural magnetic resonance in the specimens with small coercive force and large attenuation of microwave is predicted in those specimens at high frequencies (above 4 GHz).

  • PDF

Silica Coating of Nanosized CoFe2O4 Particles by Micro-emulsion Method (마이크로에멀젼법을 이용한 나노 CoFe2O4 분말의 실리카 코팅)

  • Kim, Yoo-Jin;Yu, Ri;Park, Eun-Young;Pee, Jae-Hwan;Choi, Eui-Seok
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.1
    • /
    • pp.69-73
    • /
    • 2009
  • We report the preparation of nanocrystalline cobalt ferrite, $CoFe_2O_4$ particles and their surface coating with silica layers using micro emulsion method. The cobalt ferrite nanoparticles with the size 7nm are firstly prepared by thermal decomposition method. Hydrophobic nanoparticles were coated with silica using micro-emulsion method with surfactant, $NH_4OH$, and tetraethylorthosilicate (TEOS). Monodispersed and spherical silica coated cobalt ferrite nanoparticles have average particle diameter of 38 nm and narrow sized distribution.

$V_2$$O_5$$CaCo_3$를 첨가한 Mn-Zn Ferrites의 자기적 특성에 관한 연구

  • 박천제;신성근;권오흥
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.10a
    • /
    • pp.652-655
    • /
    • 2001
  • Power transformers are increasingly becoming more significant in the advancement of electronic equipment. A high-performance, low-cost core material is necessary in order th come up with power transformers in the smallest and lightest scale possible and with low power requirements. In this study, we added V$_2$O$_{5}$ and CaCo$_3$to Mn-Zn ferrite to produce a high-performance low-cost core material. The compositions used were MnO : ZnO : Fe$_2$O$_3$= 37 : 11 : 52 mol%. The materials were sintered at 125$0^{\circ}C$ for three hours. Initial permeability was measured at 0.1MHz. At 200mT, power loss was measured by changing the temperature at 25KHz, 50KHz, 100KHz. When we added 0.lwt% and 0.1%wt% of V$_2$O$_{5}$와 CaCo$_3$, respectively we obtained 405 405KW/㎥ at 200mT, 100KHz, 6$0^{\circ}C$. We tan reduce eddy current loss as a primary loss of high frequency by adding a small amount of V$_2$O$_{5}$와 CaCo$_3$. This reduces power loss in the power transformersormers

  • PDF

Cobalt ferrite nanotubes and porous nanorods for dye removal

  • Girgis, E.;Adel, D.;Tharwat, C.;Attallah, O.;Rao, K.V.
    • Advances in nano research
    • /
    • v.3 no.2
    • /
    • pp.111-121
    • /
    • 2015
  • $CoFe_2O_4$ nanotubes and porous nanorods were prepared via a simple one-pot template-free hydrothermal method and were used as an adsorbent for the removal of dye contaminants from water. The properties of the synthesized nanotubes and porous nanorods were characterized by electron diffraction, transmission electron microscopy and x-ray powder diffraction. The Adsorption characteristics of the $CoFe_2O_4$ were examined using polar red dye and the factors affecting adsorption, such as, initial dye concentration, pH and contact time were evaluated. The overall trend followed an increase of the sorption capacity reaching a maximum of 95% dye removal at low pHs of 2-4. An enhancement in the removal efficiency was also noticed upon increasing the contact time between dye molecules and $CoFe_2O_4$ nanoparticles. The final results indicated that the $CoFe_2O_4$ nanotubes and porous nanorods can be considered as an efficient low cost and recyclable adsorbent for dye removal with efficiency 94% for Cobalt ferrite nanotubes and for Cobalt ferrite porous nanorods equals 95%.

The Electromagnetic and Thermal Properties of the Mn-Zn Ferrite for the Power Line Communication

  • Lee, Hae-Yon;Kim, Hyun-Sik;Huh, Jeoung-Sub;Oh, Young-Woo
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.12C no.4
    • /
    • pp.220-224
    • /
    • 2002
  • The electromagnetic properties and thermal behavior of Mn-Zn ferrite cores for the blocking filter of PLC application were investigated as the function of additives. The highest density and permeability were 4.98 g/㎤ and 8,221, respectively and were obtained to the specimen with composition of MnO 24 mol%, ZnO 25 mol% and Fe$_2$O$_3$51 mol%, added MoO$_3$ of 400 ppm, SiO$_2$ of 100 ppm, and CaO of 200 ppm. The uniform grains were organized, and the microstructures were compacted due to reduction of pores in the specimen. The permeability was increased up to 13,904 as the temperature of specimen increased to 110。C. However, it was decreased precipitously under 100 over 110。C. The exothermic behavior was observed in the frequency range from 1 kHz to 1 MHz, and the maximum temperature of specimen was 102。C at 1 MHz. In the consequence, the Mn-Zn ferrite core developed in this research will maintain the stable electromagnetic properties since the temperature of ferrite core rose to 93 。C in the range of 100 kHz to 450 kHz bandwidth qualified for PLC. The blocking filters were designed for single phase and three phases using the in-line and non-contact core. The best attenuation ratios of -46.46 dB and -73.9 dB were measured in the range of 100 kHz to 450 kHz bandwidth, respectively.