• Title/Summary/Keyword: Co deposition

Search Result 1,123, Processing Time 0.031 seconds

Synthesis of Li2PtO3 Thin Film Electrode by an Electrostatic Spray Deposition Technique

  • Oh, Heung-Min;Kim, Ji-Young;Lee, Kyung-Keun;Chung, Kyung-Yoon;Kim, Kwang-Bum
    • Journal of Electrochemical Science and Technology
    • /
    • v.1 no.1
    • /
    • pp.45-49
    • /
    • 2010
  • $Li_2PtO_3$ thin film electrodes, which might be possible candidate for the cathode materials for implantable batteries, were synthesized using an electrostatic spray deposition (ESD) technique onto a platinum foil substrate. Single phase $Li_2PtO_3$with a structure similar to layered $LiCoO_2$ structure were synthesized by spraying a precursor solution of $CH_3CO_2Li2H_2O$ in ethanol onto a Pt substrate at temperatures ranging from 200 to $400^{\circ}C$ followed by annealing at above $600^{\circ}C$. Lithium carbonate was the only major phase at temperatures up to $500^{\circ}C$. The X-ray diffraction (XRD) peaks of the Pt foil substrate and lithium carbonate disappeared at temperatures >$600^{\circ}C$. The volumetric capacity of the $Li_2PtO_3$ thin film synthesized using the ESD technique was approximately 817 mAh/$cm^3$, which exceeded that of $LiCoO_2$ (711 mAh/$cm^3$).

A Study on the Application of Vertical Welding Process to the Shipbuilding with High Deposition Rate (대입열 수직상진 용접의 조선적용에 관한 연구)

  • Park, Chul-Sung;Son, Young-Rak;Lee, Jeong-Soo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.5
    • /
    • pp.482-487
    • /
    • 2007
  • The container mobilization of material resources has increased continually owing to international economy growth and overseas trade increase in recent years. There are large amounts of order received for container carriers which are the biggest in the world ranging from 8,000 TEU to 10,000 TEU or above The very large container carriers have minimum thickness of sheer strake, upper deck and hatch coaming about $65mm{\sim}90mm$. Therefore, this study is performed in order to develop vertical welding process with high deposition rates applicable to thick plate above 65mm thickness. Electrogas welding process with 1 pole and 2 poles has been developed to apply to vertical joint with thick plates in the shipyard. In this paper, it was explained that the relationship of cross section to various groove types and executed that electrogas welding for thick plates. The mechanical tests were carried out to verify the soundness and effectiveness of EGW.

Gas Sensing Characteristics of WO3-Doped SnO2 Thin Films Prepared by Solution Deposition Method (용액적하법으로 제조된 WO3 첨가 SnO2 박막의 가스감응 특성)

  • Choi, Joong-Ki;Cho, Pyeong-Seok;Lee, Jong-Heun
    • Korean Journal of Materials Research
    • /
    • v.18 no.4
    • /
    • pp.193-198
    • /
    • 2008
  • $WO_3$-doped $SnO_2$ thin films were prepared in a solution-deposition method and their gas-sensing characteristics were investigated. The doping of $WO_3$ to $SnO_2$ increased the response ($R_a/R_g,\;R_a$: resistance in air, $R_g$: resistance in gas) to $H_2$ substantially. Moreover, the $R_a/R_g$ value of 10 ppm CO increased to 5.65, whereas that of $NO_2$ did not change by a significant amount. The enhanced response to $H_2$ and the selective detection of CO in the presence of $NO_2$ were explained in relation to the change in the surface reaction by the addition of $WO_3$. The $WO_3$-doped $SnO_2$ sensor can be used with the application of a $H_2$ sensor for vehicles that utilize fuel cells and as an air quality sensor to detect CO-containing exhaust gases emitted from gasoline engines.

Deposition of Cu-Ni films by Magnetron Co-Sputtering and Effects of Target Configurations on Film Properties

  • Seo, Soo-Hyung;Park, Chang-Kyun;Kim, Young-Ho;Park, Jin-Seok
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.3C no.1
    • /
    • pp.23-27
    • /
    • 2003
  • Structural properties of Cu-Ni alloy films, such as preferred orientation, crystallite size, in-ter-planar spacing, cross-sectional morphology, and electrical resistivity, are investigated in terms of tar-get configurations that are used in the film deposition by means of magnetron co-sputtering. Two different target configurations are considered in this study: a dual-type configuration in which two separate tar-gets (Cu and Ni) and different bias types (RF and DC) are used and a Ni-on-Cu type configuration in which Ni chips are attached to a Cu target. The dual-type configuration appears to have some advantages over the Ni-on-Cu type regarding the accurate control of atomic composition of the deposited Cu-Ni alloy. However, the dual-type-produced film exhibits a porous and columnar structure, the relatively large internal stress, and the high electrical resistivity, which are mainly due to the relatively low mobility of adatoms. The affects of thermal treatment and deposition conditions on the structural and electrical properties of dual-type Cu-Ni films are also discussed.

Superconducting Characteristics of Bi Thin Film by Co-deposition (동시 스퍼터 법에 의한 Bi 박막의 초전도 특성)

  • 이희갑;박용필;이준웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.278-280
    • /
    • 2001
  • BSCCO thin films have been fabricated by co-deposition at an ultralow growth rate using ion beam sputtering(IBS) method. The growth rates of the films was set in the region from 0.17 to 0.27 nm/min. MgO(100) was used as a substrate. In order to appreciate stable existing region of Bi 2212 Phase with temperature and ozone pressure, the substrate temperature was varied between 655 and 820$^{\circ}C$ and the highly condensed ozone gas pressure(PO$_3$) in vacuum chamber was varied between 2.0x10$\^$-6/ and 2.3x10$\^$-5/ Torr. Bi 2212 Phase appeared in the temperature range of 750 and 795$^{\circ}C$ and single phase of Bi 2201 existed in the lower region than 785$^{\circ}C$. Whereas, PO$_3$ dependance on structural formation was scarcely observed regardless of the pressure variation. And high quality of c-axis oriented Bi 2212 thin film with T$\sub$c/(onset) of about 70 K and T$\sub$c/(zero) of about 45 K is obtained. Only a small amount of CuO in some films was observed as impurity, and no impurity phase such as CaCuO$_2$ was observed in all of the obtained films.

  • PDF

Effect of Methane Gases on the Properties of Diamond Thin Films Synthesized by MPCVD (MPCVD법으로 증착된 다이아몬드 박막 특성에 미치는 메탄가스의 영향)

  • Song, Jin-Soo;Nam, Tae-Woon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.3
    • /
    • pp.229-233
    • /
    • 2011
  • Diamond thin films were deposited on pretreated Co cemented tungsten carbide (WC-6%Co) inserts as substrate by microwave plasma chemical vapor deposition (MPCVD) system, equipped with a 915MHz, 30kW generator for generating a large-size plasma. The substrates were pretreated with two solutions Murakami solution $[KOH:K_3Fe(CN)_6:H_2O]$ and nitric solution $[HNO_3:H_2O]$ to etch, WC and Co at cemented carbide substrates, respectively. The deposition experiments were performed at an input power of 10 kW and in a total pressure of 100 torr. The influence of various $CH_4$ contents on the crystallinity and morphology of the diamond films deposited in MPCVD was investigated using scanning electron microscopy (SEM) and Raman spectroscopy. The diamond film synthesized by the $CH_4$ plasma shows a triangle-faceted (111) diamond. As $CH_4$ contents was increased, the thickness of diamond films increased and the faceted planes disappeared. Finally, Faceted diamond changed into nano-crystalline diamond with random crystallinity.

Effect of Process Parameters on Microhardness of Ni-Al2O3 Composite Coatings (Ni-Al2O3 복합코팅의 마이크로 경도에 대한 공정변수의 영향)

  • Jin, Yeung-Jun;Park, Simon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.6_2
    • /
    • pp.1037-1045
    • /
    • 2022
  • In this study, nanoscale Al2O3 ceramic particles were used due its exceptionally high hardness characteristics, chemical stability, and wear resistance properties. These nanoparticles will be used to investigate the optimal process conditions for the electro co-deposition of the Ni-Al2O3 composite coatings. A Watts bath electrolytic solution of a controlled composition along with a fixed agitation speed was used for this study. Whereas the current density, the pH value, temperature and concentration of the nano Al2O3 particles of the electrolyte were designated as the manipulative variables. The experimental design method was based on the orthogonal array to find the optimum processing parameters for the electro co-deposition of Ni-Al2O3 composite coatings. The result of confirmation experimental based on the optimal processing condition through the analysis of variance ; EDX analysis found that the ratio of alumina increased to 8.65 wt.% and subsequently the overall hardness increased to 983 Hv. Specially, alumina were evenly distributed on Nickel matrix and particles were embedded more firmly and finely in Nickel matrix.

Photoelectrochemical Properties of Gallium Nitride (GaN) Photoelectrode Using Cobalt-phosphate (Co-pi) as Oxygen Evolution Catalyst (산소발생용 Cobalt-phosphate (Co-pi) 촉매를 이용한 Gallium Nitride (GaN) 광전극의 광전기화학적 특성)

  • Seong, Chaewon;Bae, Hyojung;Burungale, Vishal Vilas;Ha, Jun-Seok
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.2
    • /
    • pp.33-38
    • /
    • 2020
  • In the photoelectrochemical (PEC) water splitting, GaN is one of the most promising photoanode materials due to high stability in electrolytes and adjustable energy band position. However, the application of GaN is limited because of low efficiency. To improve solar to hydrogen conversion efficiency, we introduce a Cobalt Phosphate (Co-pi) catalyst by photo-electrodeposition. The Co-pi deposition GaN were characterized by SEM, EDS, and XPS, respectively, which illustrated that Co-pi was successfully decorated on the surface of GaN. PEC measurement showed that photocurrent density of GaN was 0.5 mA/㎠ and that of Co-pi deposited GaN was 0.75 mA/㎠. Impedance and Mott-Schottky measurements were performed, and as a result of the measurement, polarization resistance (Rp) and increased donor concentration (ND) values decreased from 50.35 Ω to 34.16 Ω were confirmed. As a result of analyzing the surface components before and after the water decomposition, it was confirmed that the Co-pi catalyst is stable because Co-pi remains even after the water decomposition. Through this, it was confirmed that Co-pi is effective as a catalyst for improving GaN efficiency, and when applied as a catalyst to other photoelectrodes, it is considered that the efficiency of the PEC system can be improved.

YBCO - film production by thermal co-evaporation for microwave and electrical power applications

  • Prusseit, W.;Semerad, R.
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.145-145
    • /
    • 2000
  • Large area YBCO - films are series produced by thermal co-evaporation using a deposition scheme known as Garching process, which allows intermittent oxygen supply in a high vacuum ambient by an oxygen cup spaced closely underneath the moving substrates. The deposition area of 9" diameter is capable to handle very large wafers up to 8" diam. or numerous smaller wafers. The large distance between substrates and boat sources and an elaborate heater design guarantee excellent film uniformity over the entire deposition area. YBCO - films deposited by this technique are commercially fabricated for a variety of applications - the most prominent are resistive fault current limiters and microwave filters for mobile or satellite communications. IMUX and OMUX - filters are currently space qualined by Robert Bosch GmbH and are expected to be launched and installed on an experimental platform of the international space station ALPHA in 2001. Both of the above applications require quite different film specifications on the one hand, but at the same time extremely high uniformity and reproducibility on the other hand, since hundreds of YBCO - films are combined to large systems or have to be approved for manned space missions. The success of such projects is direct evidence that the technique of thermal evaporation is readily capable to meet these high demands and has become the major deposition technique to support the emerging HTS market.

  • PDF

HIGH TEMPERATURE SUPERCONDUCTING THIN FILMS PREP ARED BY PULSED LASER DEPOSITION

  • Park, Yong-Ki;Kim, In-Seon;Ha, Dong-Han;Hwang, Doo-Sup;Huh, Yun-Sung;Park, Jong-Chul
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.5
    • /
    • pp.430-436
    • /
    • 1996
  • We have grown superconducting thin films on various substrates using a pulsed laser deposition (PLD) method. $YBa_2Cu_3O_7-\delta$ (YBCO) superconducting thin films with the superconducting transition temperature ($T_{c. offset}$) of 87K were grown on Si substrates using yittria-stabilized zirconia (YSZ) and $CeO_2$ double buffer layers. We have developed a large area pulsed laser deposition system. The system was designed to deposit up to 6 different materials on a large area substrate up to 7.5cm in diameter without breaking a vacuum. The preliminary runs of the deposition of YBCO superconducting thin films on $SrTiO_3$ substrate using this system showed a very uniform thickness profile over the entire substrate holder area. $T_{c}$ of the deposited YBCO thin film, however, was scattered depending on the position and the highest value was 85K.

  • PDF