• Title/Summary/Keyword: Co deposition

Search Result 1,120, Processing Time 0.029 seconds

Tuning for Temperature Coefficient of Resistance Through Continuous Compositional Spread Sputtering Method (연속 조성 확산 증착 방법을 통한 저항 온도 계수의 튜닝)

  • Ji-Hun Park;Jeong-Woo Sun;Woo-Jin Choi;Sang-Joon Jin;Jin-Hwan Kim;Dong-Ho Jeon;Saeng-Soo Yun;Jae-Il Chun;Jin-Ju Lim;Wook Jo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.3
    • /
    • pp.323-327
    • /
    • 2024
  • The low-temperature coefficient of resistance (TCR) is a crucial factor in the development of space-grade resistors for temperature stability. Consequently, extensive research is underway to achieve zero TCR. In this study, resistors were deposited by co-sputtering nickel-chromium-based composite compositions, metals showing positive TCR, with SiO2, introducing negative TCR components. It was observed that achieving zero TCR is feasible by adjusting the proportion of negative TCR components in the deposited thin film resistors within certain compositions. Additionally, the correlation between TCR and deposition conditions, such as sputtering power, Ar pressure, and surface roughness, was investigated. We anticipate that these findings will contribute to the study of resistors with very low TCR, thereby enhancing the reliability of space-level resistors operating under high temperatures.

Investigation of direct growth behavior of carbon nanotubes on cathode powder materials in lithium-ion batteries (리튬이차전지 양극 분말 소재 위 탄소나노튜브의 직접 성장 거동 고찰)

  • Hyun-Ho Han;Jong-Hwan Lee;Goo-Hwan Jeong
    • Journal of the Korean institute of surface engineering
    • /
    • v.57 no.1
    • /
    • pp.22-30
    • /
    • 2024
  • This study reports a direct growth of carbon nanotubes (CNTs) on the surface of LiCoO2 (LCO) powders to apply as highly efficient cathode materials in lithium-ion batteries (LIB). The CNT synthesis was performed using a thermal chemical vapor deposition apparatus with temperatures from 575 to 625 ℃. Ferritin molecules as growth catalyst of CNTs were mixed in deionized (DI) water with various concentrations from 0.05 to 1.0 mg/mL. Then, the LCO powders was dissolved in the ferritin solution at a ratio of 1g/mL. To obtain catalytic iron nanoparticles on the LCO surface, the LCO-ferritin suspension was dropped in silicon dioxide substrates and calcined under air at 550℃. Subsequently, the direct growth of CNTs on LCO powders was performed using a mixture of acetylene (10 sccm) and hydrogen (100 sccm) for 10 min. The growth behavior was characterized by scanning and transmission electron microscopy, Raman scattering spectroscopy, X-ray diffraction, and thermogravimetric analysis. The optimized condition yielding high structural quality and amount of CNTs was 600 ℃ and 0.5 mg/mL. The obtained materials will be developed as cathode materials in LIB.

Analysis of Predicted Reduction Characteristics of Ash Deposition Using Kaolin as a Additive During Pulverized Biomass Combustion and Co-firing with Coal (미분탄 연소 시스템에 바이오매스 혼소시 카올린 첨가제 적용에 따른 회 점착 저감 특성 예측 연구)

  • Jiseon Park;Jaewook Lee;Yongwoon Lee;Youngjae Lee;Won Yang;Taeyoung Chae;Jaekwan Kim
    • Clean Technology
    • /
    • v.29 no.3
    • /
    • pp.193-199
    • /
    • 2023
  • Biomass has been used to secure renewable energy certificates (REC) in domestic and overseas coal-fired power plants. In recent years, biofuel has been diversified from traditional wood pellets to non-woody biomass. Non-woody biomass has a higher content of alkaline metals such as K and Na than wood-based biomass, resulting in a lower melting point and an increase in slagging on boiler tubes, which reduces boiler efficiency. This study analyzed the effect of kaolin, an additive commonly used to increase melting points, on biomass co-firing to coal through thermochemical equilibrium calculations. In a previous experiment on biomass co-firing to coal conducted at 80 kWth, it was interpreted that the use of kaolin actually increased the amount of fouling. In this study, analysis showed that when kaolin was added, aluminosilicate compounds were generated due to Al2O3, which is abundant in coal, and mullite was formed. Thus, it was confirmed that the amount of slag increased when more kaolin was used. Further analysis was conducted by increasing the biomass co-firing rate from 0% to 100% at 10% intervals, and the results showed non-linear liquid slag generation. As a result, it was found that the least amount of liquid slag was generated when the biomass co-firing rate was between 50 and 60%. The phase diagram analysis showed that high melting point compounds such as leucite and feldspar were most abundantly generated under these conditions.

Effect of Low Magnetic Field on Dose Distribution in the Partial-Breast Irradiation (부분유방 방사선조사 시 저자기장이 선량분포에 미치는 영향)

  • Kim, Jung-in;Park, So-Yeon;Lee, Yang Hoon;Shin, Kyung Hwan;Wu, Hong-Gyun;Park, Jong Min
    • Progress in Medical Physics
    • /
    • v.26 no.4
    • /
    • pp.208-214
    • /
    • 2015
  • The aim of this study is to investigate the effect of low magnetic field on dose distribution in the partial-breast irradiation (PBI). Eleven patients with an invasive early-stage breast carcinoma were treated prospectively with PBI using 38.5 Gy delivered in 10 fractions using the $ViewRay^{(R)}$ system. For each of the treatment plans, dose distribution was calculated with magnetic field and without magnetic field, and the difference between dose and volume for each organ were evaluated. For planning target volume (PTV), the analysis included the point minimum ($D_{min}$), maximum, mean dose ($D_{mean}$) and volume receiving at least 90% ($V_{90%}$), 95% ($V_{95%}$) and 107% ($V_{107%}$) of the prescribed dose, respectively. For organs at risk (OARs), the ipsilateral lung was analyzed with $D_{mean}$ and the volume receiving 20 Gy ($V_{20\;Gy}$), and the contralateral lung was analyzed with only $D_{mean}$. The heart was analyzed with $D_{mean}$, $D_{max}$, and $V_{20\;Gy}$, and both inner and outer shells were analyzed with the point $D_{min}$, $D_{max}$ and $D_{mean}$, respectively. For PTV, the effect of low magnetic field on dose distribution showed a difference of up to 2% for volume change and 4 Gy for dose. In OARs analysis, the significant effect of the magnetic field was not observed. Despite small deviation values, the average difference of mean dose values showed significant difference (p<0.001), but there was no difference of point minimum dose values in both sehll structures. The largest deviation for the average difference of $D_{max}$ in the outer shell structure was $5.0{\pm}10.5Gy$ (p=0.148). The effect of low magnetic field of 0.35 T on dose deposition by a Co-60 beam was not significantly observed within the body for PBI IMRT plans. The dose deposition was only appreciable outside the body, where a dose build-up due to contaminated electrons generated in the treatment head and scattered electrons formed near the body surface.

Mineralogical Studies on Sulfide Ore Species of the Tong Myeong Tungsten Deposits (동명중석광산산(東明重石鑛山産) 유화광물(硫化鑛物)의 광물학적(鑛物學的) 연구(硏究))

  • Lee, Pyeong-Koo;So, Chil-Sup;Kim, Se-Hyun;Yun, Seong-Taek;Kim, Moon-Young
    • Economic and Environmental Geology
    • /
    • v.19 no.spc
    • /
    • pp.207-226
    • /
    • 1986
  • The skarn type tungsten deposits in Jechon area are developed in the contact aureole of Jurassic granodiorite and lower Paleozoic limestone beds. The Tong Myeong mine contains scheelitebearing skarns found at and near the contacts between crystalline limestone and hornfels. Although the skarns are heterogeneous, there are clear patterns in the preferred associations and nonassociations of minerals on all scales. The skarn show a zonal arrangement from limestone to hydrothermal vein as follow: wollastonite skarn, clinopyroxene skarn, clinopyroxene-garnet skarn, garnet skarn, and vesuvianite skarn. Scheelite, abundant in all skarn units except wollastonite skarn and also in quartz veins near orebodies, is everywhere strongly correlated with pyrrhotite. It is implied that it was a stable phase throughout the evolution of the zoned skarns, at least in pyrrhotite.forming environments. Deposition of scheelite was probably widely caused by increasing $a_{Ca^{2+}}$ in the fluid, resulting from associated and interrelated reactions: $FeCl_2\;aq+H_2S\;aq{\rightarrow}FeS+2H^{+}+2Cl^-$; and $CaCO_3+2H^+{\rightarrow}Ca^{+2}+H_2CO_3$. The spectral reflection powers of nine sulfide species were studied, for three mineralization stage. The shapes and characteristics of the spectral reflectivity profiles are significant in their control of other optical properties. The characteristics of the Vickers microhardness and the optical symmetry for the minerals studied are discussed. Broad radicle groupings of the sulfides can be made with regard to the reflectivity-microhardness values.

  • PDF

Multi Layer Thin Film Deposition Using Rotatable Hexagonal Gun by Sputtering for the Insulating Glass

  • Park, Se-Yeon;Lee, Jong-Ho;Choi, Bum-Ho;Han, Young-Ki;Lee, Kee-Soo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.314-315
    • /
    • 2012
  • 최근들어 반도체 및 디스플레이 소자의 구조가 복잡해짐에 따라 다층 박막 증착에 대한 중요성이 날로 증가하고 있다. 본 연구에서는 다층 박막을 효율적으로 증착하기 위해 회전이 가능한 육각건을 개발하였고, 이를 이용하여 에너지 절약형 단열 유리 증착 공정을 구현 하였다. 개발된 회전형 육각건은 기존 플래너형 스퍼터링 건의 확장형으로서 최대 6개의 물질을 하나의 챔버에서 증착이 가능하도록 구성되었다. 기존 공정의 경우 서로 다른 물질 증착을 위해서는 각각의 챔버가 필요한 반면, 회전형 육각건을 이용할 경우 하나의 챔버에서 공정을 진행할 수 있어 원가 절감이 가능하다. Fig. 1은 개발된 회전형 육각건의 모식도로서, 스퍼터링 타겟이 장착 가능한 건과, 회전부로 구성되어 있다. 이를 이용하여 투명전극-금속-투명전극-금속-절연체로 구성되어 있는 에너지 절약형 단열 유리용 다층 박막 증착 공정을 개발하였다. 이때 알루미늄이 도핑된 ZnO (AZO)는 RF 마그네트론 스퍼터로, 금속 박막은 DC 스퍼터, $SiO_2$ 및 SiN과 같은 절연 박막은 $O_2$$N_2$ 분위기에서 반응성 RF 스퍼터로 각각 증착하였다. Base pressure는 $10^{-7}$ torr였으며, 증착 시 공정 압력은 1~3 mTorr로 조정하였다. 증착 균일도 향상을 위해 20 rpm의 속도로 기판을 회전시켰다. Fig. 2(a)는 ZnO-Ag-ZnO 구조로 이루어진 다층 박막의 단면을 관찰한 투과전자 현미경 사진으로 각 층간의 계면이 뚜렷하게 나타남을 확인할 수 있으며, 각 층간의 intermixing 현상이 발생하지 않음을 확인 가능하다. 이를 보완하기 위해 Fig. 2(b)에서 보는 바와 같이 XPS를 이용하여 depth profile을 측정하였다. 각 층에서 서로 다른 물질이 발견되는 현상, 즉 교차 오염이 발생함에 따라 나타나는 intermixing 없이 거의 순수한 형태의 ZnO, Ag 박막 성분이 검출되었다. 이는 6개의 서로 다른 물질이 장착된 회전형 육각건을 이용하여 고 품질의 다층 박막 증착이 가능함을 제시하는 결과이다. 증착된 다층 박막의 균일도는 3.8%, 가시광선 영역에서 80% 이상의 투과도, 면저항 값은 3 ${\Omega}/{\Box}$ 이하를 보임으로서 에너지 절약형 단열 유리로서의 사양을 만족시키는 결과를 제시하였다.

  • PDF

Elemental Composition of Authigenic Siderites in the Early Holocene Coastal Sediments, Western Coast of Korea and Their Depositional Implication (한국 서해 초기현세 퇴적물중 자생 능철석의 원소 성분과 퇴적학적 의미)

  • Cho, J.W.;Lim, D.I.
    • Journal of the Korean earth science society
    • /
    • v.23 no.8
    • /
    • pp.697-706
    • /
    • 2002
  • Authigenic siderite grains, ranging 100 to 250-${\mu}$m in diameter, are abundant in an about 8,600-year-old sediment layer in Namyang Bay, west coast of Korea. The siderites exhibit the aggregated spherulitic morphology with well-developed rhombs on the grain surfaces. They consist mostly of FeCO$_3$ (average, 65%) and MnCO$_3$ (average, 22%) with low Mg/Ca ratio (less than 0.4) in their bulk composition. A series of compositional ternary discrimination diagrams, together with high Mn and low Mg contents, show that only meteoric porewater was involved in siderite precipitation, assuming that depositional environment of host sediment is an organic-rich freshwater system. Considering a series of results such as radiocarbon age, authigenic Mn-rich siderite and lithological features, siderite-hosting sediment (unit Tl) is interpreted as freshwater swamp or bog deposition, infilling the topographic depressions that locally existed before the formation of mid-to-late Holocene tidal deposits. Center-to-margin compositional variation within individual grain is very systematic; Mn and Ca decrease towards the margin of a siderite grain, while Fe and Mg increase. It suggests that the spherulitic siderites were precipitated in this sedimentary layer in a series during the early diagenesis of MnOx-FeOx reduction under steady-state.

A STUDY ON THE HUMAN PULPAL RESPONSE TO DENTIN BONDING DESENSITIZER (상아질 접착 지각과민 처치제에 대한 치수반응에 관한 연구)

  • You, Hee-Seung;Lee, Sung-Bok;Woo, Yi-Hyung;Park, Nam-Soo;Choi, Boo-Byung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.36 no.3
    • /
    • pp.483-495
    • /
    • 1998
  • The purpose of this study was to evaluate the human pulpal response to Dentin Bonding Desensitizer. Class V cavities were prepared on the buccal surfaces of the first premolars and Dentin Bonding Desensitizer(ALL-BOND Desensitizer, Bisco, Inc. U.S.A.) was applicated in ten experimental teeth, or ZOE(PROPAC, GC Co. TOKYO, JAPAN) cement in eight control teeth and cavities were filled with light curing glass ionomer(Fuji II LC, GC Co., TOKYO, JAPAN). At 3-day and 25-day postoperative interval. pulpal response was observed and evaluated histologically with light microscope. The results were as follows. ; 1. At 3-day postoperative interval, the control teeth were grade 1 inflammatory cell response and grade 1 connective tissue response. 2. At 25-day postoperative interval, all control teeth were grade 1 inflammatory cell response and in three control teeth grade 1 connective tissue response were observed, and one teeth showed grade 2 connective tissue response. 3. At 3-day postoperative interval, the experimental teeth were grade 1 inflammatory cell response and grade 1 connective tissue response. Below the cavity, a few inflammatory cell(PMNs) in odontoblastic layer, increased blood vessels and pulpal cells were seen and this pulpal response was similar to control teeth. 4. At 25-day postoperative interval, in four experimental teeth grade 1 inflammatory cell response and grade 1 connective tissue response were observed, and one experimental teeth showed mild inflammatory response. 5. At 3-day and 25-day postoperative interval, no reparative dentin deposition was seen. 6. Both experimental and control group, pulpal response showed difference between 3 and 25-day of postoperative interval. In control teeth, increased predentin and pulpal cells were seen and in experimental teeth, congestion of blood vessels and increased pulpal cells were seen. In conclusion, the pulpal irritation due to this Dentin Bonding Desensitizer was not severe, and it was considered that the agent was not harmful to the human pulp.

  • PDF

Fabrication of Silicon Quantum Dots in Si3N4 Matrix Using RF Magnetron Co-Sputtering (RF 마그네트론 코스퍼터링을 이용한 Si3N4 매트릭스 내부의 실리콘 양자점 제조연구)

  • Ha, Rin;Kim, Shin-Ho;Lee, Hyun-Ju;Park, Young-Bin;Lee, Jung-Chul;Bae, Jong-Seong;Kim, Yang-Do
    • Korean Journal of Materials Research
    • /
    • v.20 no.11
    • /
    • pp.606-610
    • /
    • 2010
  • Films consisting of a silicon quantum dot superlattice were fabricated by alternating deposition of silicon rich silicon nitride and $Si_3N_4$ layers using an rf magnetron co-sputtering system. In order to use the silicon quantum dot super lattice structure for third generation multi junction solar cell applications, it is important to control the dot size. Moreover, silicon quantum dots have to be in a regularly spaced array in the dielectric matrix material for in order to allow for effective carrier transport. In this study, therefore, we fabricated silicon quantum dot superlattice films under various conditions and investigated crystallization behavior of the silicon quantum dot super lattice structure. Fourier transform infrared spectroscopy (FTIR) spectra showed an increased intensity of the $840\;cm^{-1}$ peak with increasing annealing temperature due to the increase in the number of Si-N bonds. A more conspicuous characteristic of this process is the increased intensity of the $1100\;cm^{-1}$ peak. This peak was attributed to annealing induced reordering in the films that led to increased Si-$N_4$ bonding. X-ray photoelectron spectroscopy (XPS) analysis showed that peak position was shifted to higher bonding energy as silicon 2p bonding energy changed. This transition is related to the formation of silicon quantum dots. Transmission electron microscopy (TEM) and electron spin resonance (ESR) analysis also confirmed the formation of silicon quantum dots. This study revealed that post annealing at $1100^{\circ}C$ for at least one hour is necessary to precipitate the silicon quantum dots in the $SiN_x$ matrix.

Characteristics of SiO2/Si Quantum Dots Super Lattice Structure Prepared by Magnetron Co-Sputtering Method (마그네트론 코스퍼터링법으로 형성한 SiO2/Si 양자점 초격자 구조의 특성)

  • Park, Young-Bin;Kim, Shin-Ho;Ha, Rin;Lee, Hyun-Ju;Lee, Jung-Chul;Bae, Jong-Seong;Kim, Yang-Do
    • Korean Journal of Materials Research
    • /
    • v.20 no.11
    • /
    • pp.586-591
    • /
    • 2010
  • Solar cells have been more intensely studied as part of the effort to find alternatives to fossil fuels as power sources. The progression of the first two generations of solar cells has seen a sacrifice of higher efficiency for more economic use of materials. The use of a single junction makes both these types of cells lose power in two major ways: by the non-absorption of incident light of energy below the band gap; and by the dissipation by heat loss of light energy in excess of the band gap. Therefore, multi junction solar cells have been proposed as a solution to this problem. However, the $1^{st}$ and $2^{nd}$ generation solar cells have efficiency limits because a photon makes just one electron-hole pair. Fabrication of all-silicon tandem cells using an Si quantum dot superlattice structure (QD SLS) is one possible suggestion. In this study, an $SiO_x$ matrix system was investigated and analyzed for potential use as an all-silicon multi-junction solar cell. Si quantum dots with a super lattice structure (Si QD SLS) were prepared by alternating deposition of Si rich oxide (SRO; $SiO_x$ (x = 0.8, 1.12)) and $SiO_2$ layers using RF magnetron co-sputtering and subsequent annealing at temperatures between 800 and $1,100^{\circ}C$ under nitrogen ambient. Annealing temperatures and times affected the formation of Si QDs in the SRO film. Fourier transform infrared spectroscopy (FTIR) spectra and x-ray photoelectron spectroscopy (XPS) revealed that nanocrystalline Si QDs started to precipitate after annealing at $1,100^{\circ}C$ for one hour. Transmission electron microscopy (TEM) images clearly showed SRO/$SiO_2$ SLS and Si QDs formation in each 4, 6, and 8 nm SRO layer after annealing at $1,100^{\circ}C$ for two hours. The systematic investigation of precipitation behavior of Si QDs in $SiO_2$ matrices is presented.