• Title/Summary/Keyword: Co content

Search Result 4,774, Processing Time 0.029 seconds

Influence of Carbon Content on the Mechanical Properties of the Ni-Co Alloy (Ni-Co 합금강의 기계적 특성에 대한 탄소함량의 영향)

  • 장경천;국중민;정장만;권택용;최병기
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.129-135
    • /
    • 2004
  • This study was to evaluate the effect of carbon content on metallic change and fatigue characteristics with Fe-29% Ni-17% Co, low heat expansion alloy, widely using electronic components, precision machines, and sealing with glass and metal etc. The steels were fabricated with variation of carbon content, 0, 0.03, 0.06, 0.1, and 0.20% with VIM and tensile test and fatigue test were performed to achieve the above purpose. The more carbon content, the higher hardness value and yield strength. But elongation of 0.03%C, 0.06%C, and 0.10%C specimen decreased about 2.2%, 1.5% and 0.8% respectively mote than that of the base metal. Especially the strength and elongation of 0.20%C specimen increased simultaneously about 14.4% and 7.5%. Fatigue life of 0.03%C specimen decreased but the more carbon content, the higher fatigue life over 0.06% carbon content more than that of base metal.

  • PDF

Effect of $CaCO_3$ on the Chonggukchang Meju Fermentation by B. subtilis ($CaCO_3$가 Bacillus subtilis에 의한 청국장메주 발효에 미치는 영향)

  • Lee, Kang-Moo;Lee, Si-Kyung;Joo, Hyun-Kyu
    • Applied Biological Chemistry
    • /
    • v.37 no.6
    • /
    • pp.421-426
    • /
    • 1994
  • This study was carried out to investigate the effect of $CaCO_3$ on the Chungkookjang Meju fermentation. B. subtilis was cultured on the Meju added 0, 0.01, 0.1, 1% $CaCO_3$, respectively, and the chemical composition, protease activity, amino acid and vitamin B complex were examined with fermentation time. The inner temperature of the $CaCO_3$ treatments during fermentation was increased as compared with the control group. Titratable acidity in Meju decreased as $CaCO_3$ concentration increased. And protease activity and amino-nitrogen content were however high in same order. The content of amino acid was on the increase in every treatments, it made no difference between $CaCO_3$, treatments and the control. Vitamin B complex content in the $CaCO_3$ treatments was increased than in the control. The 0.01% added treatment showed the highest amount of vitamin B complex content in all the treatments.

  • PDF

Effects of elevated CO2 concentration and increased temperature on leaf quality responses of rare and endangered plants

  • Jeong, Heon-Mo;Kim, Hae-Ran;Hong, Seungbum;You, Young-Han
    • Journal of Ecology and Environment
    • /
    • v.42 no.1
    • /
    • pp.1-11
    • /
    • 2018
  • Background: In the study, the effects of elevated $CO_2$ and temperature on the nitrogen content, carbon content, and C:N ratio of seven rare and endangered species (Quercus gilva, Hibiscus hambo, Paliurus ramosissimus, Cicuta virosa, Bupleurum latissimum, Viola raddeana, and Iris dichotoma) were examined under control (ambient $CO_2$ + ambient temperature) and treatment (elevated $CO_2$ + elevated temperature) for 3 years (May 2008 and June 2011). Results: Elevated $CO_2$ concentration and temperature result in a decline in leaf nitrogen content for three woody species in May 2009 and June 2011, while four herb species showed different responses to each other. The nitrogen content of B. latissimum and I. dichotoma decreased under treatment in either 2009 and 2011. The leaf nitrogen content of C. virosa and V. raddeana was not significantly affected by elevated $CO_2$ and temperature in 2009, but that of C. virosa increased and that V. raddeana decreased under the treatment in 2011. In 2009, it was found that there was no difference in carbon content in the leaves of the six species except for that of P. ramosissimus. On the other hand, while there was no difference in carbon content in the leaves of Q. gilva in the control and treatment in 2011, carbon content in the leaves of the remaining six species increased due to the rise of $CO_2$ concentration and temperature. The C:N ratio in the leaf of C. virosa grown in the treatment was lower in both 2009 and 2011 than that in the control. The C:N ratio in the leaf of V. raddeana decreased by 16.4% from the previous year, but increased by 28.9% in 2011. For the other five species, C:N ratios increased both in 2009 and 2011. In 2009 and 2011, chlorophyll contents in the leaves of Q. gilva and H. hamabo were higher in the treatment than those in the control. In the case of P. ramosissimus, the ratio was higher in the treatment than that in the control in 2009, but in 2011, the result was the opposite. Among four herb species, the chlorophyll contents in the leaves of C. virosa, V. raddeana, and I. dichotoma did not show any difference between gradients in 2009, but decreased due to the rise of $CO_2$ concentration and temperature in 2011. Leaf nitrogen and carbon contents, C:N ratio, and chlorophyll contents in the leaves of seven rare and endangered species of plant were found to be influenced by the rise and duration of $CO_2$ concentration and temperature, species, and interaction among those factors. Conclusions: The findings above seem to show that long-term rise of $CO_2$ concentration, and temperature causes changes in physiological responses of rare and endangered species of plant and the responses may be species-specific. In particular, woody species seem to be more sensitive to the rise of $CO_2$ concentration and temperature than herb species.

$CO_2$ Production in Fermentation of Dongchimi (Pickled Radish Roots, Watery Radish Kimchi) (동치미의 발효중 $CO_2$ 발생특성)

  • 이동선;이영순
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.6
    • /
    • pp.1021-1027
    • /
    • 1997
  • $CO_2$production in fermentation of dongchimi was measured and interrelated with changes in pH and titratable acidity. The effects of salt content and temperature on $CO_2$production rate were analysed. Fermentation of dongchimi showed drastic pH decrease in early stage and subsequent levelling off around 3.9, with linearly increased acidity up to 0.3~0.4% optimum quality. $CO_2$production of dongchimi could be analysed to consist of two consecutive stages of constant rate. The first stage $CO_2$production of higher rate moved to the second stage of lower rate when acidity rose beyond 0.3%. When compared to those of 1 and 2% salt content, dongchimi of 3% salt showed lower $CO_2$production rate in the 1st stage and slower acidity change through the whole fermentation period. However, it resulted in the product of highest $CO_2$accumulation at optimal ripeness because of consistent $CO_2$production of longer 1st stage period and relatively high $CO_2$production rate in 2nd stage. $CO_2$production depended on temperature less compared to acidity change(activation energy: 57.3 and 44.3kJ/mol for $CO_2$production of 1st and 2nd stages, respectively; 79.3kJ/mol for acidity change), which means higher ratio of $CO_2$production rate relative to acidity increase at lower temperature. Slower increase in acidity at low temperature also was shown to extend the period of 1st stage $CO_2$production. Therefore, low temperature fermentation was effective in producing the high $CO_2$content dongchimi at adequate acidity, which is desirable organoleptically.

  • PDF

CO2 Emission Characteristics of Bunker C Fuel Oil by Sulfur Contents (C 중유의 황 함유량에 따른 CO2 배출 특성)

  • Lim, Wan-Gyu;Doe, Jin-Woo;Hwang, In-Ha;Ha, Jong-Han;Lee, Sang-Sup
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.4
    • /
    • pp.368-377
    • /
    • 2015
  • Bunker C fuel oil is a high-viscosity oil obtained from petroleum distillation as a residue. The sulfur content of bunker C fuel oil is limited to 4.0% or even lower to protect the environment. Because bunker C fuel oil is burned in a furnace or boiler for the generation of heat or used in an engine for the generation of power, carbon dioxide is emitted as a result of combustion. The objective of this study is to investigate $CO_2$ emission characteristics of bunker C fuel oil by sulfur contents. Calorific values and carbon contents of the fuels were measured using the oxygen bomb calorimeter method and the CHN elemental analysis method, respectively. Sulfur and hydrogen contents, which were used to calculate the net calorific value, were also measured and then net calorific values and $CO_2$ emission factors were determined. The results showed that hydrogen content increases and carbon content decreases by reducing sulfur contents for bunker C fuel oil with sulfur contents less than 1.0%. For sulfur contents between 1.0% and 4.0%, carbon content increases as sulfur content decreases but there is no evident variation in hydrogen content. Net calorific value increases by reducing sulfur contents. $CO_2$ emission factor, which is calculated by dividing carbon content by net calorific value, decreases as sulfur content decreases for bunker C fuel oil with sulfur contents less than 1.0% but it showed relatively constant values for sulfur contents between 1.0% and 4.0%.

The Toughness of Castor Oil Modified Epoxy Resins by Various Cure Temperatures (경화온도에 따른 Castor Oil/epoxy의 강인성)

  • Kim, Jong Seok;Hong, Suk Pyo
    • Applied Chemistry for Engineering
    • /
    • v.8 no.6
    • /
    • pp.973-978
    • /
    • 1997
  • The toughness and morphology of epoxy resin based on diglycidyl ether of bisphenol A(DGEBA) cured with of tris (dimethylaminomethy]) phenol(DMP-30) and castor oil (CO) as a toughening modifier have been studied. Mixtures of CO and an epoxy resin showed a higher miscibility than the classical CTBN modified epoxy resin. The glass transition temperature($T_g$) was decreased with the CO content and the cure temperature. It is interpreted that the networks of epoxy matrix obtained at high temperature are apparently looser and more flexible due to the lower crosslinking density. The toughness was slightly increased with the CO content at $40^{\circ}C$ of curing temperature. The toughness increased with increasing the cure temperature and CO content.

  • PDF

Variation Calcium Carbonate Content in Deep-Sea Pelagic Sediments of the Western Pacific Ocean (서태평양 심해 원양성 퇴적물의 탄산염 함량 변화)

  • Khim, Boo-Keun;Kim, Yeo-Hun;Kim, Hyung-Jeek;Hyeong, Ki-Seong;Yoo, Chan-Min
    • Ocean and Polar Research
    • /
    • v.32 no.1
    • /
    • pp.15-22
    • /
    • 2010
  • Calcium carbonate ($CaCO_3$) content was measured from 3 box core (BC060301, BC060303, BC070301) sediments, in addition to pilot core (PC313) sediments, from deep waters within the Western Pacific Ocean. At the two collection sites (BC060301, PC313) located close to the equator, downcore variation exhibited low $CaCO_3$ content during the interglacial period and high $CaCO_3$ content during the glacial period. Variation of coarse fraction (>$63\;{\mu}m$) content also followed changes in $CaCO_3$ content, indicating that dissolution effect of bottom water decreased during the glacial period. Such variation pattern is typical of the Pacific Ocean. However, downcore variation at the two collection sites (BC060303, BC070301) in the Philippine Sea contrasted the trend of the previous two cores (i.e., high $CaCO_3$ content during the interglacial period and low during the glacial period). This pattern is typical of the Atlantic Ocean. Such results may be attributed to the increasing dilution effect, initiated possibly by the increased transportation of terrigenous materials from nearby continent and archipelago during the glacial period when sea level was low. Alternatively, it is possible that the non-carbonate biogenic particles may have been responsible for dilution. Because of these uncertainties, the record of $CaCO_3$ variation in the deep Western Pacific Ocean is not regionally consistent.

Decomposition of Carbon Dioxide Using Sr Ferrites with Various Compositions (다양한 조성의 Sr 페라이트를 이용한 CO2분해 반응 특성)

  • 신현창;최정철;정광덕;최승철
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.2
    • /
    • pp.191-197
    • /
    • 2003
  • Sr ferrites with various compositions were applied to the decomposition of $CO_2$ to mitigate the greenhouse effect. In the reduction reaction of Sr ferrites up to 80$0^{\circ}C$, starting temperature was lower with increasing of Sr content in Sr ferrite. However, the reactivity was higher with decreasing Sr content. In the $CO_2$ decomposition reaction with reduced Sr ferrites, the amount of CO and C were depended on the ratio of Sr and Fe in Sr ferrite. With increasing Sr content. larger amount of C were deposited on the surface of ferrite. Therefore, in order to apply Sr ferrites for the decomposition of $CO_2$, it is necessary to control the ratio of Sr and Fe according to the conditions used.

Effects of Co-agent Type and Content on Curing Characteristics and Mechanical Properties of HNBR Composite

  • Lee, Young Seok;Ha, KiRyong
    • Elastomers and Composites
    • /
    • v.55 no.2
    • /
    • pp.95-102
    • /
    • 2020
  • Currently, peroxide cure is a widely used cure system for rubber materials. To improve its effectivity, co-agents are used to enhance the peroxide efficiency and mechanical properties of rubber materials. Co-agents are multifunctional organic compounds that are highly reactive towards free radicals. These co-agents provide higher cross-link densities for a given peroxide concentration and improve the mechanical properties of peroxide-cured rubber composites. In this study, trimethylolpropane trimethacrylate (TMPTMA) and high vinyl 1,2-polybutadiene (HVPBD) were used as co-agents. In order to obtain a concentration that achieves a favorable balance between mechanical properties and co-agent concentration, this research investigated the effects of co-agent content on the curing characteristics, chemical structures, and mechanical properties of HNBR composites. Additionally, the heat aging properties and compression sets of HNBR composites were investigated. Based on the results, we found that the HNBR composites with TMPTMA co-agents exhibited higher Shore A hardness and 10% modulus and better heat aging resistance and compression set than that of the HVPBD co-agent. The heat aging resistance and compression set deteriorated with increasing HVPBD content.

Verification of Core/Shell Structure of Poly(glycidyl methacrylate-co-divinyl benzene) Microspheres

  • Jin, Jeong-Min;Choi, Jin-Young;Lee, Kang-Seok;Choe, Soon-Ja
    • Macromolecular Research
    • /
    • v.17 no.5
    • /
    • pp.339-345
    • /
    • 2009
  • The core/shell type structure of the highly crosslinked poly(glycidylmetharylate-co-divinylbenzene) microspheres prepared in the precipitation polymerization in acetonitrile was thoroughly verified by means of swelling, $^1H$ NMR, XPS, TEM and TGA measurements. In the XPS measurement, the higher the GMA content, the higher the oxygen content was observed, implying that the higher content of GMA is observed in the particle surface. The further verification of the core/shell structure of the poly(GMA-co-DVB) particles was carried out using $^1H$ NMR and TEM techniques, resulting in the poly(GMA-co-DVB) particles with the GMA rich-phase and DVB rich-phase. In overall, the poly(GMA-co-DVB) microspheres consist of a highly crosslinked DVB rich-phase in the core and slightly or non-crosslinked GMA rich-phase in the shell part due to the different reaction ratios between two monomers and self-crosslinking density of DVB.