In this paper, we propose a robust method which can detect and track a high-speed small approaching target in a cluttered environment for Korean Active Protection System. The proposed method uses a temporal and spatial filter, tracking filter to detect and track a single target in consecutive order. And it is comprised of a candidate target detection step, a prior target selection step and a target tracking. Field tests on real infrared image sequences show that the proposed method could stably track a high speed and small target in complex background and target occlusion.
In this paper, we present a robust shape matching approach based on bottom-up segmentation. We show how over-segmentation results can be used to overcome both ambiguity of contour matching and occlusion. To measure the shape difference between a template and the object in the input, we use oriented chamfer matching. However, in contrast to previous work, we eliminate the affection of the background clutters before calculating the shape differences using over-segmentation results. By this method, we can increase the matching cost interval between true matching and false matching, which gives reliable results. Finally, our experiments also demonstrate that our method is robust despite the presence of occlusion.
사람의 빈번한 자세 변화, 그리고 background clutter과 occlusion으로 인해 Person Re-identificatio는 컴퓨터 비전 분야에서 가장 어려운 부분이다. 비겹침 카메라의 이미지는 어떤 사람을 다른 사람과 구별하기 어렵게 한다. 더욱 나은 성능 일치를 달성하기 위해 대부분의 방법은 특징 선택과 거리 메트릭을 개별적으로 사용한다. 그렇게 차별화된 표현과 적절한 거리를 얻을 수 있고, 사람과 중요한 특징의 무시 사이의 유사성을 설명할 수 있다. 이러한 상황은 우리가 이 문제를 다루는 새로운 방법을 고려하도록 한다. 본 논문에서는 Person Re-identification를 위한 3단 계층네트워크를 갖는 향상되고 반복적인 신경 회로망을 제안하였다. 특히 RNN(Revurrent Neural Network) 모델은 반복적인 EM(Expectation Maximum) 알고리즘과 3단 계층 네트워크를 포함하고, 차별적 특징과 지표 거리를 공동으로 학습한다. 반복적인 EM 알고리즘은 RNN 이전에 연속해 있는 CNN(Convoutional Neural Network)의 특징 추출 능력을 충분히 사용할 수 있다. 자율 학습을 통해 EM 프레임 워크는 패치의 레이블을 변경하고 더 큰 데이터 세트를 훈련할 수 있다. 네트워크를 더 잘 훈련시키기 위해 3단 계층 네트워크를 통해 CNN, RNN 및 풀링 계층이 공동으로 특징 추출을 할 수 있다. 실험 결과에 따르면 비전처리 분야에서 다른 연구자의 접근 방식과 비교할 때 이 방법은 경쟁력 있는 정확도를 얻을 수 있다. 이 방법에 대한 다른 요소의 영향은 향후 연구에서 분석되고 평가될 것이다.
Recently many studies of Radar systems mounted on ground vehicles for autonomous driving, SLAM (Simultaneous localization and mapping) and collision avoidance have been reported. Since several pixels per an object may be generated in a close-range radar application, a width of an object can be estimated automatically by various signal processing techniques. In this paper, we tried to attempt to develop an algorithm to estimate obstacle width using Radar images. The proposed method consists of 5 steps - 1) background clutter reduction, 2) local peak pixel detection, 3) region growing, 4) contour extraction and 5)width calculation. For the performance validation of our method, we performed the test width estimation using a real data of two cars acquired by commercial radar system - I200 manufactured by Navtech. As a result, we verified that the proposed method can estimate the widths of targets.
Object Tracking is a technique for tracking moving objects over time in a video image. Using object tracking technique, many research are conducted such a detecting dangerous situation and recognizing the movement of nearby objects in a smart car. However, it still remains a challenging task such as occlusion, deformation, background clutter, illumination variation, etc. In this paper, we propose a novel deep visual object tracking method that can be operated in robust to many challenging task. For the robust visual object tracking, we proposed a Convolutional Neural Network(CNN) which shares weight of the convolutional layers. Input of the CNN is a three; first frame object image, object image in a previous frame, and current search frame containing the object movement. Also we propose a method to consider the motion of the object when determining the current search area to search for the location of the object. Extensive experimental results on a authorized resource database showed that the proposed method outperformed than the conventional methods.
얼굴 인식 시스템과 표정인식 시스템과 같은 고차원 처리를 수행하는 시스템의 전처리 과정으로써 이미지 영역 내에서 얼굴을 추적하는 것은 중요한 과정이다. 본 논문에서는 피부색과 얼굴의 형태 정보를 단서로 하는 CONDENSATION 알고리즘을 사용하여 얼굴의 위치를 추적하였다. 컬러의 가중치와 형태의 가중치를 결합시키는데 어려움이 있으므로 각각을 단서로 사용하는 두 개의 추적기를 가진 시스템을 제안한다. 제안된 시스템은 복잡한 배경, 피부색의 물체가 이미지 내에 존재하는 경우, 다른 얼굴이 이미지 내에 존재하는 경우 모두에 대해서 훌륭한 성능을 보여 주었다.
This paper proposes a new segmentation method of human races from grey scale images with clutter using a racial template and elliptical structure of the human head. Face detection technique can be applied in many areas of image processing such as face recognition, composition and computer graphics. Until now, many researches about face detection have been conducted, and applications in more complicated conditions are increasing. The general case is more in a complicated background than in a simple one, and a image with not only one face. Research and development of face detection in such a general case are growing rapidly, and the necessity for that is increasing continuously. Sirohey proposed a face detection method using linearized elliptical equation. The method designed in this paper is improved to be applicable even in the more general cases like where the face is much smaller than the image size and with many faces in one image using template matching and elliptic fitting technique.
KSII Transactions on Internet and Information Systems (TIIS)
/
제13권6호
/
pp.3182-3198
/
2019
Vision-based Human Pose Estimation has been considered as one of challenging research subjects due to problems including confounding background clutter, diversity of human appearances and illumination changes in scenes. To tackle these problems, we propose to use a new multi-stage convolution machine for estimating human pose. To provide better heatmap prediction of body joints, the proposed machine repeatedly produces multiple predictions according to stages with receptive field large enough for learning the long-range spatial relationship. And stages are composed of various modules according to their strategic purposes. Pyramid stacking module and dilation module are used to handle problem of human pose at multiple scales. Their multi-scale information from different receptive fields are fused with concatenation, which can catch more contextual information from different features. And spatial and channel information of a given input are converted to gating factors by squeezing the feature maps to a single numeric value based on its importance in order to give each of the network channels different weights. Compared with other ConvNet-based architectures, we demonstrated that our proposed architecture achieved higher accuracy on experiments using standard benchmarks of LSP and MPII pose datasets.
Recently, a smart farm technology is drawing attention as an alternative to the decline of farm labor population problems due to the aging society. Especially, there is an increasing demand for automatic harvesting system that can be commercialized in the market. Pre-harvest crop detection is the most important issue for the harvesting robot system in a real-world environment. In this paper, we proposed a real-time tomato instance tracking algorithm by using deep learning and probability models. In general, It is hard to keep track of the same tomato instance between successive frames, because the tomato growing environment is disturbed by the change of lighting condition and a background clutter without a stochastic approach. Therefore, this work suggests that individual tomato object detection for each frame is conducted by YOLOv3 model, and the continuous instance tracking between frames is performed by Kalman filter and probability model. We have verified the performance of the proposed method, an experiment was shown a good result in real-world test data.
본 논문에서는 해양 환경에서 선박의 안전 운행에 위험 요소인 해상 물표를 검출하기 위한 방법을 제안한다. 해양 환경에서 획득한 적외선 영상에 대한 분석을 통하여, 우리는 해수면과 같은 배경 영역들에서는 주로 수직 방향 에지가 나타나는 반면에, 해상 물표 영역은 수직 및 수평 방향 에지가 모두 나타나는 특징을 확인할 수 있었다. 따라서 우리는 IR 영상에 대해서 수평 및 수직 에지 특징 추출에 기반한 물체 영역 검출 방법을 제안한다. 이를 위해, 첫 번째 단계에서는, 통계적 필터링 방법을 이용하여 해수면의 반짝임과 복잡한 클러터와 같은 잡음들을 효과적으로 제거할 수 있는 영상 개선 작업을 수행한다. 두 번째 단계에서는 1-D Discrete Cosine Transform(DCT) 기법을 이용하여 수직 방향 에지의 정보를 나타내는 수직 에지 지도 영상, 수평 방향 에지의 정보를 나타내는 수평 에지 지도 영상을 생성한다. 그런 다음, 수직 및 수평 에지 지도 영상들을 하나의 에지 지도 영상으로 통합한다. 세 번째 단계에서는 적응적인 문턱치 방법을 사용하여 물표 후보 영역을 검출한다. 마지막 단계에서는 IR 영상에서 검출한 물표 후보 영역들에 대해서 모폴로지 연산을 수행하여 배경 및 잡음 영역을 제거함으로써 정확한 물표 영역을 검출한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.