Journal of the Economic Geographical Society of Korea
/
v.25
no.4
/
pp.514-530
/
2022
Industrial clusters are being promoted in various ways to enhance industrial competitiveness around the world. This study aims to examine the formation and development process of regional industrial clusters in Bavaria, which are strengthening the competitiveness of local industrial enterprises and leading the continuous development of related industries in Germany, which shows stable industrial growth amidst global competition. To this end, this study first theoretically overviews the regional industrial clusters, followed by a case study of the development process and characteristics of cluster promotion policy in Bavaria, Germany. In particular, this study seeks to identify the formation and organization system of industrial clusters in Bavaria. Based on these analysis results, this study examines the main characteristics and success factors of regional industrial clusters in Bavaria, Germany, and tries to derive policy implications for creating and fostering industrial clusters in the future.
The Transactions of the Korean Institute of Electrical Engineers D
/
v.53
no.7
/
pp.536-543
/
2004
In this paper, we proposed a new method of modeling a neuro-fuzzy system using a hybrid clustering algorithm. The initial parameters and the number of clusters of the proposed system are optimally chosen simultaneously with respect to the process of regression, which is a unique characteristics of the proposed system. The proposed algorithm presented in this work improves the overall performance of the proposed a neuro-fuzzy system by choosing a proper number of clusters adaptively according the characteristics of given data. The process of clustering is performed by deciding on the number of classes, which yields the property of convergence of the system. In experiments, the superiority of the proposed neuro-fuzzy system is demonstrated, especially the process of optimizing parameters and clustering of learning speed.
Journal of the Korean Operations Research and Management Science Society
/
v.34
no.2
/
pp.35-54
/
2009
The recent economic crisis not only reduces the profit of department stores but also incurs the significance losses caused by the increasing late-payment rate of credit cards. Under this pressure, the scope of credit prediction needs to be broadened from the simple prediction of whether this customer has a good credit or not to the accurate prediction of how much profit can be gained from this customer. This study classifies the delinquent customers of credit card in a Korean department store into homogeneous clusters. Using this information, this study analyzes the repayment patterns for each cluster and develops the credit prediction system to manage the delinquent customers. The model presented by this study uses Kohonen network, which is one of artificial neural networks of data mining technique, to cluster the credit delinquent customers into clusters. Cox proportional hazard model is also used, which is one of survival analysis used in medical statistics, to analyze the repayment patterns of the delinquent customers in each cluster. The presented model estimates the repayment period of delinquent customers for each cluster and introduces the influencing variables on the repayment pattern prediction. Although there are some differences among clusters, the variables about the purchasing frequency in a month and the average number of installment repayment are the most predictive variables for the repayment pattern. The accuracy of the presented system leaches 97.5%.
While the current consensus view holds that galaxy mergers are commonplace, it is sometimes speculated that Globular Clusters (GCs) may also have undergone merging events, possibly resulting in massive objects with a strong metallicity spread such as Omega Centauri. Galaxies are mostly far, unresolved systems whose mergers are most likely wet, resulting in observational as well as modeling difficulties, but GCs are resolved into stars that can be used as discrete dynamical tracers, and their mergers might have been dry, therefore easily simulated with an N-body code. It is however difficult to determine the observational parameters best suited to reveal a history of merging based on the positions and kinematics of GC stars, if evidence of merging is at all observable. To overcome this difficulty, we investigate the applicability of supervised and unsupervised machine learning to the automatic reconstruction of the dynamical history of a stellar system. In particular we test whether statistical clustering methods can classify simulated systems into monolithic versus merger products. We run direct N-body simulations of two identical King-model clusters undergoing a head-on collision resulting in a merged system, and other simulations of isolated King models with the same total number of particles as the merged system. After several relaxation times elapse, we extract a sample of snapshots of the sky-projected positions of particles from each simulation at different dynamical times, and we run a variety of clustering and classification algorithms to classify the snapshots into two subsets in a relevant feature space.
The purpose of this study was to suggest a standard sizing system for college female students' head wears according to their head types. The subjects were 193 college women, of 20 to 25 years-old. The subjects were directly measured anthropometrically and indirectly analyzed photographically. In previous tudy (Lim, 2004), 3 clusters as their head types were categorized. the sizing system, which had frequencies more than $4\%$ was classified 6 cases, 7 cases and 9 cases, respectively, by head 3 types. 3 types of size system, which were 56-28-38, 56-30-38 and 57-28-38(Eds note: which of the measurements are head girth, surface length 1 and surface length 2), which were included in 3 clusters. Although head girths were as the same, head surface length was different in size. On the contrary, head surface length was same, head girth was different. The result will contribute to fitness of head wear fitness of consumer, and the amount of production.
Journal of the Korean Institute of Educational Facilities
/
v.24
no.4
/
pp.15-24
/
2017
This paper aims to investigate in what extent subject-centered clusters are different from one another in terms of message system, which is composed of curriculum, pedagogy and evaluation. For this, Bernstein's pedagogic transmission code(i.e., classification and framing) and school typology(i.e., open-type or close-type) have been explored, and then applied into Shimin Junior School, Japan, in order to find out substantial characteristics between subject-centered clusters. In this case study, VGA(visibility graph analysis), as one of syntactical methodologies in space syntax theory, has been used to measure to what degree they are actually different. Throughout in-depth investigation of spatial configurations, it can be said that the square of clusters is strongly connected and integrated very well, so that it acts as an anchor place for school life within a cluster. However, it works in different ways according to message systems. In the subjects like Japanese and Science whose message system are characterized by strong classification and strong framing, integration values are relatively low, and this means that it is hard to expect cross-referencing activities through the subject squares. On the contrary, the subject of Social Studies defined by weak classification and weak framing shows the highest mean integration values, and this can be expected that there are inter-changeable learning activities in the square.
In hospitals, nurses are subjectively determining the urine status to check the kidneys and circulatory system of patients whose statuses are related to patients with kidney disease, critically ill patients, and nursing homes before and after surgery. To improve this problem, this paper proposes a urine spectrum analysis system which clusters urine test results based on a hybrid machine learning model consists of unsupervised learning and supervised learning. The proposed system clusters the spectral data using unsupervised learning in the first part, and classifies them using supervised learning in the second part. The results of the proposed urine spectrum analysis system using a mixed model are evaluated with the results of pure supervised learning. This paper is expected to provide better services than existing medical services to patients by solving the shortage of nurses, shortening of examination time, and subjective evaluation in hospitals.
In this paper, a new distributed parallel algorithm for pattern classification based upon Self-Organizing Neural Network(SONN)[10-12] is developed. This system works without any information about the number of clusters or cluster centers.
The SONN model showed good performance for finding classification information, cluster centers, the number of salient clusters and membership information.
It took a considerable amount of time in the sequential version if the input data set size is very large. Therefore, design of parallel algorithm is desirous. A new distributed parallel algorithm is developed and experimental results are presented.
Hyun, Minhee;Im, Myungshin;Kim, Jae-Woo;Lee, Seong-Kook;Edge, Alastair C.
The Bulletin of The Korean Astronomical Society
/
v.39
no.2
/
pp.70.2-70.2
/
2014
Galaxy clusters, the largest gravitationally bound systems, are an important means to place constraints on cosmological models. Moreover, they are excellent places to test galaxy evolution models in connection to the environments. To this day, massive clusters have been found unexpectedly(Kang & Im 2009, Durret et al. 2011, Tashikawa et al. 2012) and evolution of galaxies in cluster have been still controversial (Elbaz et al. 2007, Cooper et al. 2008, Tran et al. 2009). Finding galaxy cluster candidates in a wide, deep imaging survey data will enable us to solve the such issues of modern extragalactic astronomy. We have used multi-wavelength data from the UKIRT Infrared Deep Sky Survey Deep Extragalactic Survey (UKIDSS DXS/J and K bands), Spitzer Wise-area InfraRed Extragalactic survey (SWIRE/two mid-infrared bands), the Panoramic Survey Telescope and Rapid Response System (PAN-STARRS/ g, r, i, z, y bands) and Infrared Medium-deep Survey(IMS/J band). We report new candidates of galaxy clusters and properties of their member galaxies in one of the wide and deep survey fields ELAIS-N1, European Large Area ISO Survey North1, covering sky area of $8.75deg^2$.
We present a photometric study of the globular clusters (GCs) in the Virgo giant elliptical galaxy M86 based on Washington $CT_1$ images. The colors of the GCs in M86 show a bimodal distribution with a blue peak at ($C-T_1$) = 1.30 and a red peak at ($C-T_1$) = 1.72. The spatial distribution of the red GCs is elongated similar to that of the stellar halo, while that of the blue GCs is roughly circular. The radial number density profile of the blue GCs is more extended than that of the red GCs. The radial number density profile of the red GCs is consistent with the surface brightness profile of the M86 stellar halo. The GC system has a negative radial color gradient, which is mainly due to the number ratio of the blue GCs to the red GCs increasing as galactocentric radius increases. The bright blue GCs in the outer region of M86 show a blue tilt: the brighter they are, the redder their mean colors get. These results are discussed in comparison with other Virgo giant elliptical galaxies.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.