• Title/Summary/Keyword: Clustering Power Analysis

Search Result 113, Processing Time 0.026 seconds

전력시장의 발전기 보수계획을 고려한 확률적 발전 모델링 (Probabilistic Generation Modeling in Electricity Markets Considering Generator Maintenance Outage)

  • 김진호;박종배
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제54권8호
    • /
    • pp.418-428
    • /
    • 2005
  • In this paper, a new probabilistic generation modeling method which can address the characteristics of changed electricity industry is proposed. The major contribution of this paper can be captured in the development of a probabilistic generation modeling considering generator maintenance outage and in the classification of market demand into multiple demand clusters for the applications to electricity markets. Conventional forced outage rates of generators are conceptually combined with maintenance outage of generators and, consequently, effective outage rates of generators are newly defined in order to properly address the probabilistic characteristic of generation in electricity markets. Then, original market demands are classified into several distinct demand clusters, which are defined by the effective outage rates of generators and by the inherent characteristic of the original demand. We have found that generators have different effective outage rates values at each classified demand cluster, depending on the market situation. From this, therefore, it can be seen that electricity markets can also be classified into several groups which show similar patterns and that the fundamental characteristics of power systems can be more efficiently analyzed in electricity markets perspectives, for this classification can be widely applicable to other technical problems in power systems such as generation scheduling, power flow analysis, price forecasts, and so on.

기대치-최대화 군집 알고리즘과 출현 패턴 마이닝을 이용한 전력 소비 패턴 분석 (Power Consumption Patterns Analysis Using Expectation-Maximization Clustering Algorithm and Emerging Pattern Mining)

  • 박진형;이헌규;신진호;류근호;김희석
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2008년도 추계학술발표대회
    • /
    • pp.261-264
    • /
    • 2008
  • 전력 회사의 효율적인 운용과 전력 시장에서의 경쟁을 위하여 고객의 전력 소비 패턴 분석 및 정확한 예측이 이루어져야 한다. 이를 위해서 이 논문에서는 원격 검침 시스템에 의한 전국의 고압 고객 데이터를 대상으로 고객의 전력 소비 패턴을 정확히 예측할 수 있는 마이닝 기법을 제안하였다. 먼저, 국내 계약종별 고객 특성에 맞는 부하 패턴의 정확한 구별을 위한 9가지의 특징 벡터를 추출하였고, 기대치-최대화 군집화 알고리즘을 사용하여 고객의 34개 대표 부하프로파일을 생성하였다. 마지막으로 추출된 특징 벡터로부터 각 대표 프로파일에 대한 출현 패턴 기반의 분류 모델을 구성하여 고객의 전력 소비 패턴을 분류하였다. 국내 원격 검침 시스템에 의해 측정된 총 3,895명의 고압 고객 데이터에 대한 실험 결과 약 91%의 분류 정확성을 보였다.

Application of data driven modeling and sensitivity analysis of constitutive equations for improving nuclear power plant safety analysis code

  • ChoHwan Oh;Doh Hyeon Kim;Jeong Ik Lee
    • Nuclear Engineering and Technology
    • /
    • 제55권1호
    • /
    • pp.131-143
    • /
    • 2023
  • Constitutive equations in a nuclear reactor safety analysis code are mostly empirical correlations developed from experiments, which always accompany uncertainties. The accuracy of the code can be improved by modifying the constitutive equations fitting wider range of data with less uncertainty. Thus, the sensitivity of the code with respect to the constitutive equations is evaluated quantitatively in the paper to understand the room for improvement of the code. A new methodology is proposed which first starts by dividing the thermal hydraulic conditions into multiple sub-regimes using self-organizing map (SOM) clustering method. The sensitivity analysis is then conducted by multiplying an arbitrary set of coefficients to the constitutive equations for each sub-divided thermal-hydraulic regime with SOM to observe how the code accuracy varies. The randomly chosen multiplier coefficient represents the uncertainty of the constitutive equations. Furthermore, the set with the smallest error with the selected experimental data can be obtained and can provide insight which direction should the constitutive equations be modified to improve the code accuracy. The newly proposed method is applied to a steady-state experiment and a transient experiment to illustrate how the method can provide insight to the code developer.

부분방전 패턴인식을 위해 EMC센서를 이용한 최적화된 RBFNNs 분류기 설계 (Design of Optimized Radial Basis Function Neural Networks Classifier Using EMC Sensor for Partial Discharge Pattern Recognition)

  • 정병진;이승철;오성권
    • 전기학회논문지
    • /
    • 제66권9호
    • /
    • pp.1392-1401
    • /
    • 2017
  • In this study, the design methodology of pattern classification is introduced for avoiding faults through partial discharge occurring in the power facilities and local sites. In order to classify some partial discharge types according to the characteristics of each feature, the model is constructed by using the Radial Basis Function Neural Networks(RBFNNs) and Particle Swarm Optimization(PSO). In the input layer of the RBFNNs, the feature vector is searched and the dimension is reduced through Principal Component Analysis(PCA) and PSO. In the hidden layer, the fuzzy coefficients of the fuzzy clustering method(FCM) are tuned using PSO. Raw datasets for partial discharge are obtained through the Motor Insulation Monitoring System(MIMS) instrument using an Epoxy Mica Coupling(EMC) sensor. The preprocessed datasets for partial discharge are acquired through the Phase Resolved Partial Discharge Analysis(PRPDA) preprocessing algorithm to obtain partial discharge types such as void, corona, surface, and slot discharges. Also, when the amplitude size is considered as two types of both the maximum value and the average value in the process for extracting the preprocessed datasets, two different kinds of feature datasets are produced. In this study, the classification ratio between the proposed RBFNNs model and other classifiers is shown by using the two different kinds of feature datasets, and also we demonstrate the proposed model shows superiority from the viewpoint of classification performance.

A new structural reliability analysis method based on PC-Kriging and adaptive sampling region

  • Yu, Zhenliang;Sun, Zhili;Guo, Fanyi;Cao, Runan;Wang, Jian
    • Structural Engineering and Mechanics
    • /
    • 제82권3호
    • /
    • pp.271-282
    • /
    • 2022
  • The active learning surrogate model based on adaptive sampling strategy is increasingly popular in reliability analysis. However, most of the existing sampling strategies adopt the trial and error method to determine the size of the Monte Carlo (MC) candidate sample pool which satisfies the requirement of variation coefficient of failure probability. It will lead to a reduction in the calculation efficiency of reliability analysis. To avoid this defect, a new method for determining the optimal size of the MC candidate sample pool is proposed, and a new structural reliability analysis method combining polynomial chaos-based Kriging model (PC-Kriging) with adaptive sampling region is also proposed (PCK-ASR). Firstly, based on the lower limit of the confidence interval, a new method for estimating the optimal size of the MC candidate sample pool is proposed. Secondly, based on the upper limit of the confidence interval, an adaptive sampling region strategy similar to the radial centralized sampling method is developed. Then, the k-means++ clustering technique and the learning function LIF are used to complete the adaptive design of experiments (DoE). Finally, the effectiveness and accuracy of the PCK-ASR method are verified by three numerical examples and one practical engineering example.

키워드 네트워크 분석을 통한 주요국 연료전지 분야 연구동향 분석 (Fuel Cell Research Trend Analysis for Major Countries by Keyword-Network Analysis)

  • 손범석;황한수;오상진
    • 한국수소및신에너지학회논문집
    • /
    • 제33권2호
    • /
    • pp.130-141
    • /
    • 2022
  • Due to continuous climate change, greenhouse gases in the atmosphere are gradually accumulating, and various extreme weather events occurring all over the world are a serious threat to human sustainability. Countries around the world are making efforts to convert energy sources from traditional fossil fuels to renewable energy. Hydrogen energy is a clean energy source that exists infinitely on Earth, and can be used in most areas that require energy, such as power generation, transportation, commerce, and household sectors. A fuel cell, a device that produces electric and thermal energy by using hydrogen energy, is a key field to respond to climate change, and major countries around the world are spurring the development of core fuel cell technology. In this paper, research trends in China, the United States, Germany, Japan, and Korea, which have the highest number of papers related to fuel cells, are analyzed through keyword network analysis.

GIS-AMR 시스템에서 시공간 데이터마이닝 기법을 이용한 전력 소비 패턴의 분석 및 예측 (Analysis and Prediction of Power Consumption Pattern Using Spatiotemporal Data Mining Techniques in GIS-AMR System)

  • 박진형;이헌규;신진호;류근호
    • 정보처리학회논문지D
    • /
    • 제16D권3호
    • /
    • pp.307-316
    • /
    • 2009
  • 이 논문에서는 자동 원격 검침(AMR) 시스템에서 수집되는 전력 사용량 데이터의 분석 결과를 실세계에 적용하기 위하여 시간과 공간의 변화에 따른 전력 소비 패턴의 주기성 탐사를 위한 시공간 데이터마이닝 기법을 제안하였다. 첫째, 고객의 전력 사용 목적에 따른 군집 분석을 위하여 분할 군집화 기법을 적용하였다. 둘째, 3차원 큐브 마이닝 기법을 적용하여 고객의 전력 소비 데이터가 갖는 시간 속성과 공간 속성에 대한 패턴을 탐색하였다. 셋째, 다양한 시간 도메인에서의 주기 패턴 발견을 위한 캘린더 패턴 마이닝 기법을 이용하여 탐사된 패턴들이 갖고 있는 시간 속성의 의미와 관계를 분석 및 예측하였다. 제안된 시공간 데이터마이닝 기법을 평가하기 위해 한국 전력 연구원에서 구축된 GIS-AMR 시스템에 의해 제공되는 고압 전력 소비 고객 3,256명의 2007년 1월부터 4월까지 총 266,426건의 데이터로부터 시간의 주기성 및 공간적 특성을 포함한 전력 소비 패턴을 분석하였다. 제안한 분석 기법을 통하여 특정 그룹에 속한 각각의 대표 프로파일이 시간과 공간상에서 갖는 주기성을 발견하였다.

ANN-based Evaluation Model of Combat Situation to predict the Progress of Simulated Combat Training

  • Yoon, Soungwoong;Lee, Sang-Hoon
    • 한국컴퓨터정보학회논문지
    • /
    • 제22권7호
    • /
    • pp.31-37
    • /
    • 2017
  • There are lots of combined battlefield elements which complete the war. It looks problematic when collecting and analyzing these elements and then predicting the situation of war. Commander's experience and military power assessment have widely been used to come up with these problems, then simulated combat training program recently supplements the war-game models through recording real-time simulated combat data. Nevertheless, there are challenges to assess winning factors of combat. In this paper, we characterize the combat element (ce) by clustering simulated combat data, and then suggest multi-layered artificial neural network (ANN) model, which can comprehend non-linear, cross-connected effects among ces to assess mission completion degree (MCD). Through our ANN model, we have the chance of analyzing and predicting winning factors. Experimental results show that our ANN model can explain MCDs through networking ces which overperform multiple linear regression model. Moreover, sensitivity analysis of ces will be the basis of predicting combat situation.

군집화 알고리즘을 이용한 배전선로 내부 열화 패턴 분석 (Analysis of the Inner Degradation Pattern by Clustering Algorism at Distribution Line)

  • 최운식;김진사
    • 한국전기전자재료학회논문지
    • /
    • 제29권1호
    • /
    • pp.58-61
    • /
    • 2016
  • Degradation in power cables used in distribution lines to the material of the wire, manufacturing method, but also the line of the environment, generates a variety of degradation depending upon the type of load. The local wire deterioration weighted wire breakage accident can occur frequently, causing significant proprietary damage can lead to accidents and precious. In this study, the signal detected by the eddy current aim to develop algorithms capable of determining the signals for the top part and at least part of the signal by using a signal processing technique called K-means algorithm.

데이터마이닝 기법을 이용한 신경망 기반의 화력발전소 보일러 튜브 누설 고장 진단에 관한 연구 (A Study on Fault Diagnosis of Boiler Tube Leakage based on Neural Network using Data Mining Technique in the Thermal Power Plant)

  • 김규한;이흥석;정희명;김형수;박준호
    • 전기학회논문지
    • /
    • 제66권10호
    • /
    • pp.1445-1453
    • /
    • 2017
  • In this paper, we propose a fault detection model based on multi-layer neural network using data mining technique for faults due to boiler tube leakage in a thermal power plant. Major measurement data related to faults are analyzed using statistical methods. Based on the analysis results, the number of input data of the proposed fault detection model is simplified. Then, each input data is clustering with normal data and fault data by applying K-Means algorithm, which is one of the data mining techniques. fault data were trained by the neural network and tested fault detection for boiler tube leakage fault.