• Title/Summary/Keyword: Clustering Effect

Search Result 299, Processing Time 0.035 seconds

Study on mapping of dark matter clustering from real space to redshift space

  • Zheng, Yi;Song, Yong-Seon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.38.2-38.2
    • /
    • 2016
  • The mapping of dark matter clustering from real to redshift spaces introduces the anisotropic property to the measured density power spectrum in redshift space, known as the Redshift Space Distortion (hereafter RSD) effect. The mapping formula is intrinsically non-linear, which is complicated by the higher order polynomials due to the indefinite cross correlations between the density and velocity fields, and the Finger-of-God (hereafter FoG) effect due to the randomness of the peculiar velocity field. Furthermore, the rigorous test of this mapping formula is contaminated by the unknown non-linearity of the density and velocity fields, including their auto- and cross-correlations, for calculating which our theoretical calculation breaks down beyond some scales. Whilst the full higher order polynomials remains unknown, the other systematics can be controlled consistently within the same order truncation in the expansion of the mapping formula, as shown in this paper. The systematic due to the unknown non-linear density and velocity fields is removed by separately measuring all terms in the expansion using simulations. The uncertainty caused by the velocity randomness is controlled by splitting the FoG term into two pieces, 1) the non-local FoG term being independent of the separation vector between two different points, and 2) the local FoG term appearing as an indefinite polynomials which is expanded in the same order as all other perturbative polynomials. Using 100 realizations of simulations, we find that the best fitted non-local FoG function is Gaussian, with only one scale-independent free parameter, and that our new mapping formulation accurately reproduces the observed power spectrum in redshift space at the smallest scales by far, up to k ~ 0.3 h/Mpc, considering the resolution of future experiments.

  • PDF

Effect of Annealing of Nafion Recast Membranes Containing Ionic Liquids

  • Park, Jin-Soo;Shin, Mun-Sik;Sekhon, S.S.;Choi, Young-Woo;Yang, Tae-Hyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.1
    • /
    • pp.9-15
    • /
    • 2011
  • The composite membranes comprising of sulfonated polymers as matrix and ionic liquids as ion-conducting medium in replacement of water are studied to investigate the effect of annealing of the sulfonated polymers. The polymeric membranes are prepared on recast Nafion containing the ionic liquid, 1-ethyl-3-methylimidazolium tetrafluoroborate ($EMIBF_4$). The composite membranes are characterized by thermogravitational analyses, ion conductivity and small-angle X-ray scattering. The composite membranes annealed at $190^{\circ}C$ for 2 h after the fixed drying step showed better ionic conductivity, but no significant increase in thermal stability. The mean Bragg distance between the ionic clusters, which is reflected in the position of the ionomer peak (small-angle scattering maximum), is larger in the annealed composite membranes containing $EMIBF_4$ than the non-annealed ones. It might have been explained to be due to the different level of ion-clustering ability of the hydrophilic parts (i.e., sulfonic acid groups) in the non- and annealed polymer matrix. In addition, the ionic conductivity of the membranes shows higher for the annealed composite membranes containing $EMIBF_4$. It can be concluded that the annealing of the composite membranes containing ionic liquids due to an increase in ion-clustering ability is able to bring about the enhancement of ionic conductivity suitable for potential use in proton exchange membrane fuel cells (PEMFCs) at medium temperatures ($150-200^{\circ}C$) in the absence of external humidification.

Basic reproduction number of African swine fever in wild boars (Sus scrofa) and its spatiotemporal heterogeneity in South Korea

  • Lim, Jun-Sik;Kim, Eutteum;Ryu, Pan-Dong;Pak, Son-Il
    • Journal of Veterinary Science
    • /
    • v.22 no.5
    • /
    • pp.71.1-71.12
    • /
    • 2021
  • Background: African swine fever (ASF) is a hemorrhagic fever occurring in wild boars (Sus scrofa) and domestic pigs. The epidemic situation of ASF in South Korean wild boars has increased the risk of ASF in domestic pig farms. Although basic reproduction number (R0) can be applied for control policies, it is challenging to estimate the R0 for ASF in wild boars due to surveillance bias, lack of wild boar population data, and the effect of ASF-positive wild boar carcass on disease dynamics. Objectives: This study was undertaken to estimate the R0 of ASF in wild boars in South Korea, and subsequently analyze the spatiotemporal heterogeneity. Methods: We detected the local transmission clusters using the spatiotemporal clustering algorithm, which was modified to incorporate the effect of ASF-positive wild boar carcass. With the assumption of exponential growth, R0 was estimated for each cluster. The temporal change of the estimates and its association with the habitat suitability of wild boar were analyzed. Results: Totally, 22 local transmission clusters were detected, showing seasonal patterns occurring in winter and spring. Mean value of R0 of each cluster was 1.54. The estimates showed a temporal increasing trend and positive association with habitat suitability of wild boar. Conclusions: The disease dynamics among wild boars seems to have worsened over time. Thus, in areas with a high elevation and suitable for wild boars, practical methods need to be contrived to ratify the control policies for wild boars.

Hierarchical Clustering Approach of Multisensor Data Fusion: Application of SAR and SPOT-7 Data on Korean Peninsula

  • Lee, Sang-Hoon;Hong, Hyun-Gi
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.65-65
    • /
    • 2002
  • In remote sensing, images are acquired over the same area by sensors of different spectral ranges (from the visible to the microwave) and/or with different number, position, and width of spectral bands. These images are generally partially redundant, as they represent the same scene, and partially complementary. For many applications of image classification, the information provided by a single sensor is often incomplete or imprecise resulting in misclassification. Fusion with redundant data can draw more consistent inferences for the interpretation of the scene, and can then improve classification accuracy. The common approach to the classification of multisensor data as a data fusion scheme at pixel level is to concatenate the data into one vector as if they were measurements from a single sensor. The multiband data acquired by a single multispectral sensor or by two or more different sensors are not completely independent, and a certain degree of informative overlap may exist between the observation spaces of the different bands. This dependence may make the data less informative and should be properly modeled in the analysis so that its effect can be eliminated. For modeling and eliminating the effect of such dependence, this study employs a strategy using self and conditional information variation measures. The self information variation reflects the self certainty of the individual bands, while the conditional information variation reflects the degree of dependence of the different bands. One data set might be very less reliable than others in the analysis and even exacerbate the classification results. The unreliable data set should be excluded in the analysis. To account for this, the self information variation is utilized to measure the degrees of reliability. The team of positively dependent bands can gather more information jointly than the team of independent ones. But, when bands are negatively dependent, the combined analysis of these bands may give worse information. Using the conditional information variation measure, the multiband data are split into two or more subsets according the dependence between the bands. Each subsets are classified separately, and a data fusion scheme at decision level is applied to integrate the individual classification results. In this study. a two-level algorithm using hierarchical clustering procedure is used for unsupervised image classification. Hierarchical clustering algorithm is based on similarity measures between all pairs of candidates being considered for merging. In the first level, the image is partitioned as any number of regions which are sets of spatially contiguous pixels so that no union of adjacent regions is statistically uniform. The regions resulted from the low level are clustered into a parsimonious number of groups according to their statistical characteristics. The algorithm has been applied to satellite multispectral data and airbone SAR data.

  • PDF

Robust process fault diagnosis with uncertain data

  • Lee, Gi-Baek;Mo, Kyung-Joo;Yoon, En-Sup
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.283-286
    • /
    • 1996
  • This study suggests a new methodology for the fault diagnosis based on the signed digraph in developing the fault diagnosis system of a boiler plant. The suggested methodology uses the new model, fault-effect tree. The SDG has the advantage, which is simple and graphical to represent the causal relationship between process variables, and therefore is easy to understand. However, it cannot handle the broken path cases arisen from data uncertainty as it assumes consistent path. The FET is based on the SDG to utilize the advantages of the SDG, and also covers the above problem. The proposed FET model is constructed by clustering of measured variables, decomposing knowledge base and searching the fault propagation path from the possible faults. The search is performed automatically. The fault diagnosis system for a boiler plant, ENDS was constructed using the expert system shell G2 and the advantages of the presented method were confirmed through case studies.

  • PDF

Effect of Fatty Acid Profiles on Sensory Properties of Beef Evaluated by Korean and Australian Consumer Group

  • Cho, S.H.;Park, B.Y.;Kim, J.H.;Hwang, I.H.;Kim, D.H.;Kim, Y.K.;Lee, J.M.
    • Proceedings of the Korean Society for Food Science of Animal Resources Conference
    • /
    • 2004.10a
    • /
    • pp.301-304
    • /
    • 2004
  • Total contents of fatty acid compositions such as SFA, MUFA, and PUFA affected the beef preference more for Korean consumers than for Australian consumers while most of fatty acids had no relationship with the beef preference for Australian consumers. Although variations in the absolute concentration and in the relative proportions of different fatty acids would affect the flavor profile, the effect of fatty acids on the preference for clustering depended more on consumer groups than on beef origin.

  • PDF

Time-Resolved Photoluminescence Measurement of Frenkel-type Excitonic Lifetimes in InGaN/GaN Multi-quantum Well Structures

  • Kim, Keun-Joo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.08a
    • /
    • pp.121-125
    • /
    • 2003
  • Time-resolved photoluminescence from InGaN/GaN multi-quantum well structures was investigated for two different shapes of square- and trapezoidal wells grown by metal-organic chemical vapor deposition. To compare to the conventional square well structure with a radiative recombination lifetime of 0.170 nsec, the large value of lifetime of 0.540 nsec from trapezoidal well were found at room temperature. This value is similar to the value for GaN host material indicating no confinement effect of quantum well. Furthermore, the high resolution transmission electron microscopy image provides the In clustering effect in the trapezoidal well structure.

  • PDF

Time-Resolved Photoluminescence Measurement of Frenkel-type Excitonic Lifetimes in InGaN/GaN Multi-quantum Well Structures

  • Shin, Gwi-Su;Hwang, Sung-Won;Kim, Keun-Joo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.4 no.5
    • /
    • pp.19-23
    • /
    • 2003
  • Time-resolved photoluminescence from InGaN/GaN multi-quantum well structures was investigated for two different shapes of square-and trapezoidal wells grown by metal-organic chemical vapor deposition. To compare to the conventional square well structure with a radiative recombination lifetime of 0.170 nsec, the large value of lifetime of 0.540 nsec from trapezoidal well were found at room temperature. This value is similar to the value for GaN host material indicating no confinement effect of quantum well. Furthermore, the high resolution transmission electron microscopy image provides the In clustering effect in the trapezoidal well structure.

M ssbauer effect of ${Ni_{1-x}}{Cd_x}{FeAlO_4}$ (${Ni_{1-x}}{Cd_x}{FeAlO_4}$의 Mossbauer 효과)

  • Ko, Jeong-Dae;Hong, Sung-Rak
    • Korean Journal of Materials Research
    • /
    • v.11 no.10
    • /
    • pp.859-862
    • /
    • 2001
  • The crystal structure and magnetic properties of the $Ni_{1-x} Cd_xFeAlO_4$(0$\leq$x$\leq$0.5) have been investigated by means of X-ray diffractometry and Mossbauer spectroscopy. The samples($0\leq$x$\leq$0.5) have been prepared by the ceramic sintering method. The X-ray diffraction pattern shows that the crystal structure of the samples is a cubic spinel type. The lattice constant has been found by extrapolation using the Nelson- Riley function and it increases slightly from $8.321{\AA}$ to $8.410{\AA}$ with Cd concentration. The Mossbauer spectra for x<0.4 show a superposition of two sextets and a paramagnetic doublet at room temperature. The cation distribution for x=0 was determined to be $[Fe_{0.75}Al_{0.25}]^A[NiFe_{0.25}Al_{0.75}^BO_4$. The superparamagnetic doublet for x< 0.4 seems to be due to A1 ion in tetrahedral site by the superparamagnetic clustering effect.

  • PDF

F0 Extrema Timing of HL and LH in North Kyungsang Korean: Evidence from a Mimicry Task

  • Kim, Jung-Sun
    • Phonetics and Speech Sciences
    • /
    • v.4 no.3
    • /
    • pp.43-49
    • /
    • 2012
  • This paper describes the categorical effects of pitch accent contrasts in a mimicry task. It focuses, specifically, on examining how fundamental frequency (f0) variation reflects phonological contrasts from speakers of two distinct varieties of Korean (i.e., North Kyungsang and South Cholla). The results showed that, in a mimicry task using synthetic speech continua, there was a categorical effect in f0 peak timing for North Kyungsang speakers, but the timing of f0 peaks and valleys in the responses of South Cholla speakers was more variable, presenting a gradient or non-categorical effect. Evidence of categorical effects was represented as the shift of f0 peak times along an acoustic continuum for North Kyungsang speakers. The range for the shift of f0 valley times was much narrower, compared to that of f0 peak times. The degree of a shift near the middle of the continuum showed variability across individual mimicry responses. However, the categorical structure in mimicry responses regarding the clustering of f0 peak points was more significant for North Kyungsang speakers than for South Cholla speakers. Additionally, the finding of the current study implies that the location of f0 peak times depends on individuals' imitative (or cognitive) abilities.