• Title/Summary/Keyword: Clustering Design

Search Result 602, Processing Time 0.035 seconds

Mechanical behavior of prefabricated steel-concrete composite beams considering the clustering degree of studs

  • Gao, Yanmei;Fan, Liang;Yang, Weipeng;Shi, Lu;Zhou, Dan;Wang, Ming
    • Steel and Composite Structures
    • /
    • v.45 no.3
    • /
    • pp.425-436
    • /
    • 2022
  • The mechanical behaviors of the prefabricated steel-concrete composite beams are usually affected by the strength and the number of shear studs. Furthermore, the discrete degree of the arrangement for shear stud clusters, being defined as the clustering degree of shear stud λ in this paper, is an important factor for the mechanical properties of composite beams, even if the shear connection degree is unchanged. This paper uses an experimental and calculation method to investigate the influence of λ on the mechanical behavior of the composite beam. Five specimens (with different λ but having the same shear connection degree) of prefabricated composite beams are designed to study the ultimate supporting capacity, deformation, slip and shearing stiffness of composite beams. Experimental results are compared with the conventional slip calculation method (based on the influence of λ) of prefabricated composite beams. The results showed that the stiffness in the elastoplastic stage is reduced when λ is greater than 0.333, while the supporting capacity of beams has little affected by the change in λ. The slip distribution along the beam length tends to be zig-zagged due to the clustering of studs, and the slip difference increases with the increase of λ.

Review on Energy Efficient Clustering based Routing Protocol

  • Kanu Patel;Hardik Modi
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.10
    • /
    • pp.169-178
    • /
    • 2023
  • Wireless sensor network is wieldy use for IoT application. The sensor node consider as physical device in IoT architecture. This all sensor node are operated with battery so the power consumption is very high during the data communication and low during the sensing the environment. Without proper planning of data communication the network might be dead very early so primary objective of the cluster based routing protocol is to enhance the battery life and run the application for longer time. In this paper we have comprehensive of twenty research paper related with clustering based routing protocol. We have taken basic information, network simulation parameters and performance parameters for the comparison. In particular, we have taken clustering manner, node deployment, scalability, data aggregation, power consumption and implementation cost many more points for the comparison of all 20 protocol. Along with basic information we also consider the network simulation parameters like number of nodes, simulation time, simulator name, initial energy and communication range as well energy consumption, throughput, network lifetime, packet delivery ration, jitter and fault tolerance parameters about the performance parameters. Finally we have summarize the technical aspect and few common parameter must be fulfill or consider for the design energy efficient cluster based routing protocol.

Multi-FNN Identification Based on HCM Clustering and Evolutionary Fuzzy Granulation

  • Park, Ho-Sung;Oh, Sung-Kwun
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.2
    • /
    • pp.194-202
    • /
    • 2003
  • In this paper, we introduce a category of Multi-FNN (Fuzzy-Neural Networks) models, analyze the underlying architectures and propose a comprehensive identification framework. The proposed Multi-FNNs dwell on a concept of fuzzy rule-based FNNs based on HCM clustering and evolutionary fuzzy granulation, and exploit linear inference being treated as a generic inference mechanism. By this nature, this FNN model is geared toward capturing relationships between information granules known as fuzzy sets. The form of the information granules themselves (in particular their distribution and a type of membership function) becomes an important design feature of the FNN model contributing to its structural as well as parametric optimization. The identification environment uses clustering techniques (Hard C - Means, HCM) and exploits genetic optimization as a vehicle of global optimization. The global optimization is augmented by more refined gradient-based learning mechanisms such as standard back-propagation. The HCM algorithm, whose role is to carry out preprocessing of the process data for system modeling, is utilized to determine the structure of Multi-FNNs. The detailed parameters of the Multi-FNN (such as apexes of membership functions, learning rates and momentum coefficients) are adjusted using genetic algorithms. An aggregate performance index with a weighting factor is proposed in order to achieve a sound balance between approximation and generalization (predictive) abilities of the model. To evaluate the performance of the proposed model, two numeric data sets are experimented with. One is the numerical data coming from a description of a certain nonlinear function and the other is NOx emission process data from a gas turbine power plant.

Clustering Performance Analysis of Autoencoder with Skip Connection (스킵연결이 적용된 오토인코더 모델의 클러스터링 성능 분석)

  • Jo, In-su;Kang, Yunhee;Choi, Dong-bin;Park, Young B.
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.12
    • /
    • pp.403-410
    • /
    • 2020
  • In addition to the research on noise removal and super-resolution using the data restoration (Output result) function of Autoencoder, research on the performance improvement of clustering using the dimension reduction function of autoencoder are actively being conducted. The clustering function and data restoration function using Autoencoder have common points that both improve performance through the same learning. Based on these characteristics, this study conducted an experiment to see if the autoencoder model designed to have excellent data recovery performance is superior in clustering performance. Skip connection technique was used to design autoencoder with excellent data recovery performance. The output result performance and clustering performance of both autoencoder model with Skip connection and model without Skip connection were shown as graph and visual extract. The output result performance was increased, but the clustering performance was decreased. This result indicates that the neural network models such as autoencoders are not sure that each layer has learned the characteristics of the data well if the output result is good. Lastly, the performance degradation of clustering was compensated by using both latent code and skip connection. This study is a prior study to solve the Hanja Unicode problem by clustering.

Detection and Control of Variation Source for a Production Unit

  • Xu, Jichao;Akpolat, Hasan
    • International Journal of Quality Innovation
    • /
    • v.4 no.1
    • /
    • pp.148-159
    • /
    • 2003
  • Variation is the archenemy of quality. To reduce or control the variation in a complex production unit, firstly we need to identify the location of the root cause of the variation. This paper discusses the detection of variability and the techniques used for reduction of variation for a production unit consisting of many processes. In the first part of this paper, the background of variability detection in production systems is introduced which is then followed by a weighted network corresponding to correlation matrix of all processes. Based on the network and clustering criterion of maximum spanning tree, a classification of all processes is derived. Furthermore, the variation of each process in a class is determined by residual analysis. In the last part, the use of methods of robust design for the processes with a larger variability is discussed.

Recycling Cell Formation using Group Technology for Disposal Products (그룹 데크놀로지 기법을 이용한 폐제품의 리싸이클링 셀 형성)

  • 서광규;김형준
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2000.05a
    • /
    • pp.111-123
    • /
    • 2000
  • The recycling cell formation problem means that disposal products are classified into recycling part families using group technology in their end of life phase. Disposal products have the uncertainties of product status by usage influences. Recycling cells are formed considering design, process and usage attributes. In this paper, a novel approach to the design of cellular recycling system is proposed, which deals with the recycling cell formation and assignment of identical products concurrently. Fuzzy clustering algorithm and Fuzzy-ART neural network are applied to describe the states of disposal product with the membership functions and to make recycling cell formation. This approach leads to recycling and reuse of the materials, components, and subassemblies and can evaluate the value at each cell of disposal products. Application examples are illustrated by disposal refrigerators, compared fuzzy clustering with Fuzzy-ART neural network performance in cell formation.

  • PDF

A Study on the Reference Template Database Design Method for Frame-based Classification of Underwater Transient Signals (프레임 기반의 수중 천이신호 식별을 위한 기준패턴의 데이터베이스 구성 방법에 관한 연구)

  • Lim, Tae-Gyun;Ryu, Jong-Youb;Kim, Tae-Hwan;Bae, Keun-Sung
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.885-886
    • /
    • 2008
  • This paper presents a reference template design method for frame-based classification of underwater transient signals. In the proposed method, framebased feature vectors of each reference signal are clustered by using LBG clustering algorithm to reduce the number of feature vectors in each class. Experimental results have shown that drastic reduction of the reference database can be achieved while maintaining the classification performance with LBG clustering algorithm.

  • PDF

Design of Data-centroid Radial Basis Function Neural Network with Extended Polynomial Type and Its Optimization (데이터 중심 다항식 확장형 RBF 신경회로망의 설계 및 최적화)

  • Oh, Sung-Kwun;Kim, Young-Hoon;Park, Ho-Sung;Kim, Jeong-Tae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.3
    • /
    • pp.639-647
    • /
    • 2011
  • In this paper, we introduce a design methodology of data-centroid Radial Basis Function neural networks with extended polynomial function. The two underlying design mechanisms of such networks involve K-means clustering method and Particle Swarm Optimization(PSO). The proposed algorithm is based on K-means clustering method for efficient processing of data and the optimization of model was carried out using PSO. In this paper, as the connection weight of RBF neural networks, we are able to use four types of polynomials such as simplified, linear, quadratic, and modified quadratic. Using K-means clustering, the center values of Gaussian function as activation function are selected. And the PSO-based RBF neural networks results in a structurally optimized structure and comes with a higher level of flexibility than the one encountered in the conventional RBF neural networks. The PSO-based design procedure being applied at each node of RBF neural networks leads to the selection of preferred parameters with specific local characteristics (such as the number of input variables, a specific set of input variables, and the distribution constant value in activation function) available within the RBF neural networks. To evaluate the performance of the proposed data-centroid RBF neural network with extended polynomial function, the model is experimented with using the nonlinear process data(2-Dimensional synthetic data and Mackey-Glass time series process data) and the Machine Learning dataset(NOx emission process data in gas turbine plant, Automobile Miles per Gallon(MPG) data, and Boston housing data). For the characteristic analysis of the given entire dataset with non-linearity as well as the efficient construction and evaluation of the dynamic network model, the partition of the given entire dataset distinguishes between two cases of Division I(training dataset and testing dataset) and Division II(training dataset, validation dataset, and testing dataset). A comparative analysis shows that the proposed RBF neural networks produces model with higher accuracy as well as more superb predictive capability than other intelligent models presented previously.

An Efficient Configuration Technology of Business Events in User Interface Prototype (사용자 인터페이스 프로토타입에서 비즈니스 이벤트의 효율적 구성 방법)

  • 최유순;김정옥
    • Journal of the Korea Computer Industry Society
    • /
    • v.5 no.1
    • /
    • pp.167-176
    • /
    • 2004
  • It is extremely difficult for these various experts to participate in user interface design. Therefore, there has to be the studies for an automated design for User interface that could satisfy various expertise areas. In sequence to achieve this, there has to be a assessment metrics to support uer's comprehension for a business information processing, And an studies for a visual cohesion to design a qualified user interface. As a result, this paper is going to provide a modeling method of clustering design that could enhance visual cohesion of user interface prototypes. This is going to propose techniques and regulations of designing for clustering qualified user interface.

  • PDF

Two-stage Sampling for Estimation of Prevalence of Bovine Tuberculosis (이단계표본추출을 이용한 소결핵병 유병률 추정)

  • Pak, Son-Il
    • Journal of Veterinary Clinics
    • /
    • v.28 no.4
    • /
    • pp.422-426
    • /
    • 2011
  • For a national survey in which wide geographic region or an entire country is targeted, multi-stage sampling approach is widely used to overcome the problem of simple random sampling, to consider both herd- and animallevel factors associated with disease occurrence, and to adjust clustering effect of disease in the population in the calculation of sample size. The aim of this study was to establish sample size for estimating bovine tuberculosis (TB) in Korea using stratified two-stage sampling design. The sample size was determined by taking into account the possible clustering of TB-infected animals on individual herds to increase the reliability of survey results. In this study, the country was stratified into nine provinces (administrative unit) and herd, the primary sampling unit, was considered as a cluster. For all analyses, design effect of 2, between-cluster prevalence of 50% to yield maximum sample size, and mean herd size of 65 were assumed due to lack of information available. Using a two-stage sampling scheme, the number of cattle sampled per herd was 65 cattle, regardless of confidence level, prevalence, and mean herd size examined. Number of clusters to be sampled at a 95% level of confidence was estimated to be 296, 74, 33, 19, 12, and 9 for desired precision of 0.01, 0.02, 0.03, 0.04, 0.05, and 0.06, respectively. Therefore, the total sample size with a 95% confidence level was 172,872, 43,218, 19,224, 10,818, 6,930, and 4,806 for desired precision ranging from 0.01 to 0.06. The sample size was increased with desired precision and design effect. In a situation where the number of cattle sampled per herd is fixed ranging from 5 to 40 with a 5-head interval, total sample size with a 95% confidence level was estimated to be 6,480, 10,080, 13,770, 17,280, 20.925, 24,570, 28,350, and 31,680, respectively. The percent increase in total sample size resulting from the use of intra-cluster correlation coefficient of 0.3 was 22.2, 32.1, 36.3, 39.6, 41.9, 42.9, 42,2, and 44.3%, respectively in comparison to the use of coefficient of 0.2.