• Title/Summary/Keyword: Clustered regularly interspaced short palindromic repeats-Cas9

Search Result 22, Processing Time 0.02 seconds

Generation of knockout mouse models of cyclin-dependent kinase inhibitors by engineered nuclease-mediated genome editing

  • Park, Bo Min;Roh, Jae-il;Lee, Jaehoon;Lee, Han-Woong
    • Laboraroty Animal Research
    • /
    • v.34 no.4
    • /
    • pp.264-269
    • /
    • 2018
  • Cell cycle dysfunction can cause severe diseases, including neurodegenerative disease and cancer. Mutations in cyclin-dependent kinase inhibitors controlling the G1 phase of the cell cycle are prevalent in various cancers. Mice lacking the tumor suppressors $p16^{Ink4a}$ (Cdkn2a, cyclin-dependent kinase inhibitor 2a), $p19^{Arf}$ (an alternative reading frame product of Cdkn2a,), and $p27^{Kip1}$ (Cdkn1b, cyclin-dependent kinase inhibitor 1b) result in malignant progression of epithelial cancers, sarcomas, and melanomas, respectively. Here, we generated knockout mouse models for each of these three cyclin-dependent kinase inhibitors using engineered nucleases. The $p16^{Ink4a}$ and $p19^{Arf}$ knockout mice were generated via transcription activator-like effector nucleases (TALENs), and $p27^{Kip1}$ knockout mice via clustered regularly interspaced short palindromic repeats/CRISPR-associated nuclease 9 (CRISPR/Cas9). These gene editing technologies were targeted to the first exon of each gene, to induce frameshifts producing premature termination codons. Unlike preexisting embryonic stem cell-based knockout mice, our mouse models are free from selectable markers or other external gene insertions, permitting more precise study of cell cycle-related diseases without confounding influences of foreign DNA.

CRISPR as a strong gene editing tool

  • Shen, Shengfu;Loh, Tiing Jen;Shen, Hongling;Zheng, Xuexiu;Shen, Haihong
    • BMB Reports
    • /
    • v.50 no.1
    • /
    • pp.20-24
    • /
    • 2017
  • Clustered regularly-interspaced short palindromic repeats (CRISPR) is a new and effective genetic editing tool. CRISPR was initially found in bacteria to protect it from virus invasions. In the first step, specific DNA strands of virus are identified by guide RNA that is composed of crRNA and tracrRNA. Then RNAse III is required for producing crRNA from pre-crRNA. In The second step, a crRNA:tracrRNA:Cas9 complex guides RNase III to cleave target DNA. After cleavage of DNA by CRISPR-Cas9, DNA can be fixed by Non-Homologous End Joining (NHEJ) and Homology Directed Repair (HDR). Whereas NHEJ is simple and random, HDR is much more complex and accurate. Gene editing by CRISPR is able to be applied to various biological field such as agriculture and treating genetic diseases in human.

CRISPR/Cas9-Mediated Re-Sensitization of Antibiotic-Resistant Escherichia coli Harboring Extended-Spectrum β-Lactamases

  • Kim, Jun-Seob;Cho, Da-Hyeong;Park, Myeongseo;Chung, Woo-Jae;Shin, Dongwoo;Ko, Kwan Soo;Kweon, Dae-Hyuk
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.2
    • /
    • pp.394-401
    • /
    • 2016
  • Recently, the clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (CRISPR/Cas9) system, a genome editing technology, was shown to be versatile in treating several antibiotic-resistant bacteria. In the present study, we applied the CRISPR/Cas9 technology to kill extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli. ESBL bacteria are mostly multidrug resistant (MDR), and have plasmid-mediated antibiotic resistance genes that can be easily transferred to other members of the bacterial community by horizontal gene transfer. To restore sensitivity to antibiotics in these bacteria, we searched for a CRISPR/Cas9 target sequence that was conserved among >1,000 ESBL mutants. There was only one target sequence for each TEM- and SHV-type ESBL, with each of these sequences found in ~200 ESBL strains of each type. Furthermore, we showed that these target sequences can be exploited to re-sensitize MDR cells in which resistance is mediated by genes that are not the target of the CRISPR/Cas9 system, but by genes that are present on the same plasmid as target genes. We believe our Re-Sensitization to Antibiotics from Resistance (ReSAFR) technology, which enhances the practical value of the CRISPR/Cas9 system, will be an effective method of treatment against plasmid-carrying MDR bacteria.

Current status of CRISPR/Cas9 base editor technologies and their applications in crop precision breeding

  • Kim, Rigyeong;Song, Jaeeun;Ga, Eunji;Min, Myung Ki;Lee, Jong-Yeol;Lim, Sun-Hyung;Kim, Beom-Gi
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.4
    • /
    • pp.885-895
    • /
    • 2019
  • Plant biotechnologists have long dreamed of technologies to manipulate genes in plants at will. This dream has come true partly through the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology, which now has been used to edit genes in several important crops. However, there are many restrictions in editing a gene precisely using the CRISPR/Cas9 technology because CRISPR/Cas9 may cause deletions or additions in some regions of the target gene. Several other technologies have been developed for gene targeting and precision editing. Among these, base editors might be the most practically and efficiently used compared to others. Base editors are tools which are able to cause a transition from cytosine into thymine, or from adenine into guanine very precisely on specific sequences. Cytosine base editors basically consist of nCas9, cytosine deaminase, and uracil DNA glycosylase inhibitor (UGI). Adenine base editors consist of nCas9 and adenine deaminase. These were first developed for human cells and have since also been applied successfully to crops. Base editors have been successfully applied for productivity improvement, fortification and herbicide resistance of crops. Thus, base editor technologies start to open a new era for precision gene editing or breeding in crops and might result in revolutionary changes in crop breeding and biotechnology.

Production of Knockout Mice using CRISPR/Cas9 in FVB Strain

  • Bae, Hee Sook;Lee, Soo Jin;Koo, Ok Jae
    • Journal of Embryo Transfer
    • /
    • v.30 no.4
    • /
    • pp.299-303
    • /
    • 2015
  • KO mice provide an excellent tool to determine roles of specific genes in biomedical filed. Traditionally, knockout mice were generated by homologous recombination in embryonic stem cells. Recently, engineered nucleases, such as zinc finger nuclease, transcription activator-like effector nuclease and clustered regularly interspaced short palindromic repeats (CRISPR), were used to produce knockout mice. This new technology is useful because of high efficiency and ability to generate biallelic mutation in founder mice. Until now, most of knockout mice produced using engineered nucleases were C57BL/6 strain. In the present study we used CRISPR-Cas9 system to generate knockout mice in FVB strain. We designed and synthesized single guide RNA (sgRNA) of CRISPR system for targeting gene, Abtb2. Mouse zygote were obtained from superovulated FVB female mice at 8-10 weeks of age. The sgRNA was injected into pronuclear of the mouse zygote with recombinant Cas9 protein. The microinjected zygotes were cultured for an additional day and only cleaved embryos were selected. The selected embryos were surgically transferred to oviduct of surrogate mother and offsprings were obtained. Genomic DNA were isolated from the offsprings and the target sequence was amplified using PCR. In T7E1 assay, 46.7% among the offsprings were founded as mutants. The PCR products were purified and sequences were analyzed. Most of the mutations were founded as deletion of few sequences at the target site, however, not identical among the each offspring. In conclusion, we found that CRISPR system is very efficient to generate knockout mice in FVB strain.

Disruption of the Tff1 gene in mice using CRISPR/Cas9 promotes body weight reduction and gastric tumorigenesis

  • Kim, Hyejeong;Jeong, Haengdueng;Cho, Yejin;Lee, Jaehoon;Nam, Ki Taek;Lee, Han-Woong
    • Laboraroty Animal Research
    • /
    • v.34 no.4
    • /
    • pp.257-263
    • /
    • 2018
  • Trefoil factor 1 (TFF1, also known as pS2) is strongly expressed in the gastrointestinal mucosa and plays a critical role in the differentiation of gastric glands. Since approximately 50% of all human gastric cancers are associated with decreased TFF1 expression, it is considered a tumor suppressor gene. Tff1 deficiency in mice results in histological changes in the antral and pyloric gastric mucosa, with severe hyperplasia and dysplasia of epithelial cells, resulting in the development of antropyloric adenoma. Here, we generated Tff1-knockout (KO) mice, without a neomycin resistant ($Neo^R$) cassette, using the clustered regularly interspaced short palindromic repeats/CRISPR-associated nuclease 9 (CRSIPR/Cas9) system. Though our Tff1-KO mice showed phenotypes very similar to the previous embryonic stem (ES)-cell-based KO mice, they differed from the previous reports in that a reduction in body weight was observed in males. These results demonstrate that these newly established Tff1-KO mice are useful tools for investigating genetic and environmental factors influencing gastric cancer, without the effects of artificial gene insertion. Furthermore, these findings suggest a novel hypothesis that Tff1 expression influences gender differences.

Multi-resistance strategy for viral diseases and in vitro short hairpin RNA verification method in pigs

  • Oh, Jong-nam;Choi, Kwang-hwan;Lee, Chang-kyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.4
    • /
    • pp.489-498
    • /
    • 2018
  • Objective: Foot and mouth disease (FMD) and porcine reproductive and respiratory syndrome (PRRS) are major diseases that interrupt porcine production. Because they are viral diseases, vaccinations are of only limited effectiveness in preventing outbreaks. To establish an alternative multi-resistant strategy against FMD virus (FMDV) and PRRS virus (PRRSV), the present study introduced two genetic modification techniques to porcine cells. Methods: First, cluster of differentiation 163 (CD163), the PRRSV viral receptor, was edited with the clustered regularly interspaced short palindromic repeats-CRISPR-associated protein 9 technique. The CD163 gene sequences of edited cells and control cells differed. Second, short hairpin RNA (shRNAs) were integrated into the cells. The shRNAs, targeting the 3D gene of FMDV and the open reading frame 7 (ORF7) gene of PRRSV, were transferred into fibroblasts. We also developed an in vitro shRNA verification method with a target gene expression vector. Results: shRNA activity was confirmed in vitro with vectors that expressed the 3D and ORF7 genes in the cells. Cells containing shRNAs showed lower transcript levels than cells with only the expression vectors. The shRNAs were integrated into CD163-edited cells to combine the two techniques, and the viral genes were suppressed in these cells. Conclusion: We established a multi-resistant strategy against viral diseases and an in vitro shRNA verification method.

In vivo multiplex gene targeting with Streptococcus pyogens and Campylobacter jejuni Cas9 for pancreatic cancer modeling in wild-type animal

  • Chang, Yoo Jin;Bae, Jihyeon;Zhao, Yang;Lee, Geonseong;Han, Jeongpil;Lee, Yoon Hoo;Koo, Ok Jae;Seo, Sunmin;Choi, Yang-Kyu;Yeom, Su Cheong
    • Journal of Veterinary Science
    • /
    • v.21 no.2
    • /
    • pp.26.1-26.14
    • /
    • 2020
  • Pancreatic ductal adenocarcinoma is a lethal cancer type that is associated with multiple gene mutations in somatic cells. Genetically engineered mouse is hardly applicable for developing a pancreatic cancer model, and the xenograft model poses a limitation in the reflection of early stage pancreatic cancer. Thus, in vivo somatic cell gene engineering with clustered regularly interspaced short palindromic repeats is drawing increasing attention for generating an animal model of pancreatic cancer. In this study, we selected Kras, Trp53, Ink4a, Smad4, and Brca2 as target genes, and applied Campylobacter jejuni Cas9 (CjCas9) and Streptococcus pyogens Cas9 (SpCas9) for developing pancreatic cancer using adeno associated virus (AAV) transduction. After confirming multifocal and diffuse transduction of AAV2, we generated SpCas9 overexpression mice, which exhibited high double-strand DNA breakage (DSB) in target genes and pancreatic intraepithelial neoplasia (PanIN) lesions with two AAV transductions; however, wild-type (WT) mice with three AAV transductions did not develop PanIN. Furthermore, small-sized Cjcas9 was applied to WT mice with two AAV system, which, in addition, developed high extensive DSB and PanIN lesions. Histological changes and expression of cancer markers such as Ki67, cytokeratin, Mucin5a, alpha smooth muscle actin in duct and islet cells were observed. In addition, the study revealed several findings such as 1) multiple DSB potential of AAV-CjCas9, 2) peri-ductal lymphocyte infiltration, 3) multi-focal cancer marker expression, and 4) requirement of > 12 months for initiation of PanIN in AAV mediated targeting. In this study, we present a useful tool for in vivo cancer modeling that would be applicable for other disease models as well.

The Role of Nuclear Receptor Subfamily 1 Group H Member 4 (NR1H4) in Colon Cancer Cell Survival through the Regulation of c-Myc Stability

  • Lee, Yun Jeong;Lee, Eun-Young;Choi, Bo Hee;Jang, Hyonchol;Myung, Jae-Kyung;You, Hye Jin
    • Molecules and Cells
    • /
    • v.43 no.5
    • /
    • pp.459-468
    • /
    • 2020
  • Nuclear receptor subfamily group H member 4 (NR1H4), also known as farnesoid X receptor, has been implicated in several cellular processes in the liver and intestine. Preclinical and clinical studies have suggested a role of NR1H4 in colon cancer development; however, how NR1H4 regulates colon cancer cell growth and survival remains unclear. We generated NR1H4 knockout (KO) colon cancer cells using clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein-9 nuclease (CAS9) technology and explored the effects of NR1H4 KO in colon cancer cell proliferation, survival, and apoptosis. Interestingly, NR1H4 KO cells showed impaired cell proliferation, reduced colony formation, and increased apoptotic cell death compared to control colon cancer cells. We identified MYC as an important mediator of the signaling pathway alterations induced by NR1H4 KO. NR1H4 silencing in colon cancer cells resulted in reduced MYC protein levels, while NR1H4 activation using an NR1H4 ligand, chenodeoxycholic acid, resulted in time- and dose-dependent MYC induction. Moreover, NR1H4 KO enhanced the anti-cancer effects of doxorubicin and cisplatin, supporting the role of MYC in the enhanced apoptosis observed in NR1H4 KO cells. Taken together, our findings suggest that modulating NR1H4 activity in colon cancer cells might be a promising alternative approach to treat cancer using MYC-targeting agents.

OAS1 and OAS3 negatively regulate the expression of chemokines and interferon-responsive genes in human macrophages

  • Lee, Wook-Bin;Choi, Won Young;Lee, Dong-Hyun;Shim, Hyeran;KimHa, Jeongsil;Kim, Young-Joon
    • BMB Reports
    • /
    • v.52 no.2
    • /
    • pp.133-138
    • /
    • 2019
  • Upon viral infection, the 2', 5'-oligoadenylate synthetase (OAS)-ribonuclease L (RNaseL) system works to cleave viral RNA, thereby blocking viral replication. However, it is unclear whether OAS proteins have a role in regulating gene expression. Here, we show that OAS1 and OAS3 act as negative regulators of the expression of chemokines and interferon-responsive genes in human macrophages. Clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein-9 nuclease (Cas9) technology was used to engineer human myeloid cell lines in which the OAS1 or OAS3 gene was deleted. Neither OAS1 nor OAS3 was exclusively responsible for the degradation of rRNA in macrophages stimulated with poly(I:C), a synthetic surrogate for viral double-stranded (ds)RNA. An mRNA sequencing analysis revealed that genes related to type I interferon signaling and chemokine activity were increased in $OAS1^{-/-}$ and $OAS3^{-/-}$ macrophages treated with intracellular poly(I:C). Indeed, retinoic-acid-inducible gene (RIG)-I- and interferon-induced helicase C domain-containing protein (IFIH1 or MDA5)-mediated induction of chemokines and interferon-stimulated genes was regulated by OAS3, but Toll-like receptor 3 (TLR3)- and TLR4-mediated induction of those genes was modulated by OAS1 in macrophages. However, stimulation of these cells with type I interferons had no effect on OAS1- or OAS3-mediated chemokine secretion. These data suggest that OAS1 and OAS3 negatively regulate the expression of chemokines and interferon-responsive genes in human macrophages.