• Title/Summary/Keyword: Cluster-based Search

Search Result 143, Processing Time 0.021 seconds

A Study of Apparel Purchase Behaviors for High School Girls as determined by Attitudes toward Fashion (유행 태도에 따른 여고생의 의복구매행동에 관한 연구)

  • 최윤정;김미숙
    • The Research Journal of the Costume Culture
    • /
    • v.7 no.4
    • /
    • pp.111-126
    • /
    • 1999
  • Apparel purchase behaviors were investigated for the high school girls grouped by attitude toward fashion. Differences in attitudes toward fashion were also investigated among the groups determined by demographic characteristics. Data were collected by a self-administered questionnaire survey to 600 high school girls living in Seoul, and 480 were used for the data analysis. Cluster analysis, Chi-sguare analysis, ANOVA, and Duncan\`s multiple range test were used for data analysis. Technical school students and those who spending higher amount of monthly allowances showed favorable attitudes toward fashion. Based on the attitudes toward fashion, respondents were classified into 3 groups : fashion-oriented(32.3%), fashion-conformed(47.3%), and unconcerned(20.4%). Among the 3 groups, the Fashion-oriented tended to make purchase decision for clothing based on there own, or peer\`s opinions, to use personal sources for information search, to spend more money for clothing, and to consider design and brand names as the most important criteria when purchasing apparel products than the less fashion-oriented did. Among clothing styles popular to students, the most appropriately perceived for student wear were semi-formal style, and the least appropriate ones were wearing bold colored and patterned underwear for the purpose of showing out. Most of the popular styles among high school girls were perceived less than appropriate student\`s attire.

  • PDF

A Design of P2P Cloud System Using The Super P2P

  • Jung, Yean-Woo;Cho, Seongsoo;Lee, Jong-Yong;Jeong, KyeDong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.7 no.1
    • /
    • pp.42-48
    • /
    • 2015
  • Generally, the current commercial cloud system is hosted by the centralization large datacenter. However, the other clouding forms existed and one of them is the P2P cloud. The P2P Cloud is a distributed systems, is freedom to join and leave and is possible to provide the IaaS. Commonly, P2P Cloud System is based on Pure-P2P System. Since a number of connection paths exist, it has a high reliability and easily scalability of the network. However, there are disadvantages of the slow rate of route because of looking up the all peers in order to search for the peer. In this paper, it proposes the P2P cloud system based on super-peer P2P. Super-peer P2P system has fast routing time, because of searching for cluster unit and it also can has high reliability and high scalability. We designs the super Peer cloud service and proposes the system model and Resource Allocation Algorithm for IaaS in Super peer P2P environment.

Personal Recommendation Service Design Through Big Data Analysis on Science Technology Information Service Platform (과학기술정보 서비스 플랫폼에서의 빅데이터 분석을 통한 개인화 추천서비스 설계)

  • Kim, Dou-Gyun
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.28 no.4
    • /
    • pp.501-518
    • /
    • 2017
  • Reducing the time it takes for researchers to acquire knowledge and introduce them into research activities can be regarded as an indispensable factor in improving the productivity of research. The purpose of this research is to cluster the information usage patterns of KOSEN users and to suggest optimization method of personalized recommendation service algorithm for grouped users. Based on user research activities and usage information, after identifying appropriate services and contents, we applied a Spark based big data analysis technology to derive a personal recommendation algorithm. Individual recommendation algorithms can save time to search for user information and can help to find appropriate information.

Developing efficient model updating approaches for different structural complexity - an ensemble learning and uncertainty quantifications

  • Lin, Guangwei;Zhang, Yi;Liao, Qinzhuo
    • Smart Structures and Systems
    • /
    • v.29 no.2
    • /
    • pp.321-336
    • /
    • 2022
  • Model uncertainty is a key factor that could influence the accuracy and reliability of numerical model-based analysis. It is necessary to acquire an appropriate updating approach which could search and determine the realistic model parameter values from measurements. In this paper, the Bayesian model updating theory combined with the transitional Markov chain Monte Carlo (TMCMC) method and K-means cluster analysis is utilized in the updating of the structural model parameters. Kriging and polynomial chaos expansion (PCE) are employed to generate surrogate models to reduce the computational burden in TMCMC. The selected updating approaches are applied to three structural examples with different complexity, including a two-storey frame, a ten-storey frame, and the national stadium model. These models stand for the low-dimensional linear model, the high-dimensional linear model, and the nonlinear model, respectively. The performances of updating in these three models are assessed in terms of the prediction uncertainty, numerical efforts, and prior information. This study also investigates the updating scenarios using the analytical approach and surrogate models. The uncertainty quantification in the Bayesian approach is further discussed to verify the validity and accuracy of the surrogate models. Finally, the advantages and limitations of the surrogate model-based updating approaches are discussed for different structural complexity. The possibility of utilizing the boosting algorithm as an ensemble learning method for improving the surrogate models is also presented.

Cluster-Based Similarity Calculation of IT Assets: Method of Attacker's Next Targets Detection

  • Dongsung Kim;Seon-Gyoung Shon;Dan Dongseong Kim;Huy-Kang Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.5
    • /
    • pp.1-10
    • /
    • 2024
  • Attackers tend to use similar vulnerabilities when finding their next target IT assets. They also continuously search for new attack targets. Therefore, it is essential to find the potential targets of attackers in advance. Our method proposes a novel approach for efficient vulnerable asset management and zero-day response. In this paper, we propose the ability to detect the IT assets that are potentially infected by the recently discovered vulnerability based on clustering and similarity results. As the experiment results, 86% of all collected assets are clustered within the same clustering. In addition, as a result of conducting a similarity calculation experiment by randomly selecting vulnerable assets, assets using the same OS and service were listed.

Analysis of shopping website visit types and shopping pattern (쇼핑 웹사이트 탐색 유형과 방문 패턴 분석)

  • Choi, Kyungbin;Nam, Kihwan
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.85-107
    • /
    • 2019
  • Online consumers browse products belonging to a particular product line or brand for purchase, or simply leave a wide range of navigation without making purchase. The research on the behavior and purchase of online consumers has been steadily progressed, and related services and applications based on behavior data of consumers have been developed in practice. In recent years, customization strategies and recommendation systems of consumers have been utilized due to the development of big data technology, and attempts are being made to optimize users' shopping experience. However, even in such an attempt, it is very unlikely that online consumers will actually be able to visit the website and switch to the purchase stage. This is because online consumers do not just visit the website to purchase products but use and browse the websites differently according to their shopping motives and purposes. Therefore, it is important to analyze various types of visits as well as visits to purchase, which is important for understanding the behaviors of online consumers. In this study, we explored the clustering analysis of session based on click stream data of e-commerce company in order to explain diversity and complexity of search behavior of online consumers and typified search behavior. For the analysis, we converted data points of more than 8 million pages units into visit units' sessions, resulting in a total of over 500,000 website visit sessions. For each visit session, 12 characteristics such as page view, duration, search diversity, and page type concentration were extracted for clustering analysis. Considering the size of the data set, we performed the analysis using the Mini-Batch K-means algorithm, which has advantages in terms of learning speed and efficiency while maintaining the clustering performance similar to that of the clustering algorithm K-means. The most optimized number of clusters was derived from four, and the differences in session unit characteristics and purchasing rates were identified for each cluster. The online consumer visits the website several times and learns about the product and decides the purchase. In order to analyze the purchasing process over several visits of the online consumer, we constructed the visiting sequence data of the consumer based on the navigation patterns in the web site derived clustering analysis. The visit sequence data includes a series of visiting sequences until one purchase is made, and the items constituting one sequence become cluster labels derived from the foregoing. We have separately established a sequence data for consumers who have made purchases and data on visits for consumers who have only explored products without making purchases during the same period of time. And then sequential pattern mining was applied to extract frequent patterns from each sequence data. The minimum support is set to 10%, and frequent patterns consist of a sequence of cluster labels. While there are common derived patterns in both sequence data, there are also frequent patterns derived only from one side of sequence data. We found that the consumers who made purchases through the comparative analysis of the extracted frequent patterns showed the visiting pattern to decide to purchase the product repeatedly while searching for the specific product. The implication of this study is that we analyze the search type of online consumers by using large - scale click stream data and analyze the patterns of them to explain the behavior of purchasing process with data-driven point. Most studies that typology of online consumers have focused on the characteristics of the type and what factors are key in distinguishing that type. In this study, we carried out an analysis to type the behavior of online consumers, and further analyzed what order the types could be organized into one another and become a series of search patterns. In addition, online retailers will be able to try to improve their purchasing conversion through marketing strategies and recommendations for various types of visit and will be able to evaluate the effect of the strategy through changes in consumers' visit patterns.

The Statistically and Economically Significant Clustering Method for Economic Clusters in an Urban Region (통계적 및 경제적 유의성을 가진 경제 클러스터 탐식방법에 대한 연구)

  • Shin Jungyeop
    • Journal of the Korean Geographical Society
    • /
    • v.40 no.2 s.107
    • /
    • pp.187-201
    • /
    • 2005
  • With the trend of urban polynucleation, the issue of detecting economic clusters or urban employment centers has been considered as crucial. However, the prior researches had some limitations in detecting economic clusters in the empirical analysis: i.e. inherent inefficiency of density-based clustering methods, difficulty in detecting linear types of spatial clusters and lacks of consideration of economic significance. The purpose of this paper is to propose the clustering method with the procedure of testing statistical and economic significance named as VCEC (Variable Clumping method for Economic Clusters) and to apply it to a case analysis of Erie County, New York, in order to test its validity. By applying a search radius and a total employment as an economic threshold, 'the both statistically and economically significant clusters' were detected in the Erie County, and proved to be efficient.

A Study on the Musical Theme Clustering for Searching Note Sequences (음렬 탐색을 위한 주제소절 자동분류에 관한 연구)

  • 심지영;김태수
    • Journal of the Korean Society for information Management
    • /
    • v.19 no.3
    • /
    • pp.5-30
    • /
    • 2002
  • In this paper, classification feature is selected with focus of musical content, note sequences pattern, and measures similarity between note sequences followed by constructing clusters by similar note sequences, which is easier for users to search by showing the similar note sequences with the search result in the CBMR system. Experimental document was $\ulcorner$A Dictionary of Musical Themes$\lrcorner$, the index of theme bar focused on classical music and obtained kern-type file. Humdrum Toolkit version 1.0 was used as note sequences treat tool. The hierarchical clustering method is by stages focused on four-type similarity matrices by whether the note sequences segmentation or not and where the starting point is. For the measurement of the result, WACS standard is used in the case of being manual classification and in the case of the note sequences starling from any point in the note sequences, there is used common feature pattern distribution in the cluster obtained from the clustering result. According to the result, clustering with segmented feature unconnected with the starting point Is higher with distinct difference compared with clustering with non-segmented feature.

Analysis on Domestic Franchise Food Tech Interest by using Big Data

  • Hyun Seok Kim;Yang-Ja Bae;Munyeong Yun;Gi-Hwan Ryu
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.2
    • /
    • pp.179-184
    • /
    • 2024
  • Franchise are now a red ocean in Food industry and they need to find other options to appeal for their product, the uprising content, food tech. The franchises are working on R&D to help franchisees with the operations. Through this paper, we analyze the franchise interest on food tech and to help find the necessity of development for franchisees who are in needs with hand, not of human, but of technology. Using Textom, a big data analysis tool, "franchise" and "food tech" were selected as keywords, and search frequency information of Naver and Daum was collected for a year from 01 January, 2023 to 31 December, 2023, and data preprocessing was conducted based on this. For the suitability of the study and more accurate data, data not related to "food tech" was removed through the refining process, and similar keywords were grouped into the same keyword to perform analysis. As a result of the word refining process, a total of 10,049 words were derived, and among them, the top 50 keywords with the highest relevance and search frequency were selected and applied to this study. The top 50 keywords derived through word purification were subjected to TF-IDF analysis, visualization analysis using Ucinet6 and NetDraw programs, network analysis between keywords, and cluster analysis between each keyword through Concor analysis. By using big data analysis, it was found out that franchise do have interest on food tech. "technology", "franchise", "robots" showed many interests and keyword "R&D" showed that franchise are keen on developing food tech to seize competitiveness in Franchise Industry.

Performance Comparison of Spatial Split Algorithms for Spatial Data Analysis on Spark (Spark 기반 공간 분석에서 공간 분할의 성능 비교)

  • Yang, Pyoung Woo;Yoo, Ki Hyun;Nam, Kwang Woo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.25 no.1
    • /
    • pp.29-36
    • /
    • 2017
  • In this paper, we implement a spatial big data analysis prototype based on Spark which is an in-memory system and compares the performance by the spatial split algorithm on this basis. In cluster computing environments, big data is divided into blocks of a certain size order to balance the computing load of big data. Existing research showed that in the case of the Hadoop based spatial big data system, the split method by spatial is more effective than the general sequential split method. Hadoop based spatial data system stores raw data as it is in spatial-divided blocks. However, in the proposed Spark-based spatial analysis system, there is a difference that spatial data is converted into a memory data structure and stored in a spatial block for search efficiency. Therefore, in this paper, we propose an in-memory spatial big data prototype and a spatial split block storage method. Also, we compare the performance of existing spatial split algorithms in the proposed prototype. We presented an appropriate spatial split strategy with the Spark based big data system. In the experiment, we compared the query execution time of the spatial split algorithm, and confirmed that the BSP algorithm shows the best performance.