• 제목/요약/키워드: Cluster estimation

검색결과 213건 처리시간 0.055초

On Nonparametric Estimation of Data Edges

  • Park, Byeong U.
    • Journal of the Korean Statistical Society
    • /
    • 제30권2호
    • /
    • pp.265-280
    • /
    • 2001
  • Estimation of the edge of a distribution has many important applications. It is related to classification, cluster analysis, neural network, and statistical image recovering. The problem also arises in measuring production efficiency in economic systems. Three most promising nonparametric estimators in the existing literature are introduced. Their statistical properties are provided, some of which are new. Themes of future study are also discussed.

  • PDF

Wireless sensor network design for large-scale infrastructures health monitoring with optimal information-lifespan tradeoff

  • Xiao-Han, Hao;Sin-Chi, Kuok;Ka-Veng, Yuen
    • Smart Structures and Systems
    • /
    • 제30권6호
    • /
    • pp.583-599
    • /
    • 2022
  • In this paper, a multi-objective wireless sensor network configuration optimization method is proposed. The proposed method aims to determine the optimal information and lifespan wireless sensor network for structural health monitoring of large-scale infrastructures. In particular, cluster-based wireless sensor networks with multi-type of sensors are considered. To optimize the lifetime of the wireless sensor network, a cluster-based network optimization algorithm that optimizes the arrangement of cluster heads and base station is developed. On the other hand, based on the Bayesian inference, the uncertainty of the estimated parameters can be quantified. The coefficient of variance of the estimated parameters can be obtained, which is utilized as a holistic measure to evaluate the estimation accuracy of sensor configurations with multi-type of sensors. The proposed method provides the optimal wireless sensor network configuration that satisfies the required estimation accuracy with the longest lifetime. The proposed method is illustrated by designing the optimal wireless sensor network configuration of a cable-stayed bridge and a space truss.

Traffic based Estimation of Optimal Number of Super-peers in Clustered P2P Environments

  • Kim, Ju-Gyun;Lee, Jun-Soo
    • 한국멀티미디어학회논문지
    • /
    • 제11권12호
    • /
    • pp.1706-1715
    • /
    • 2008
  • In a super-peer based P2P network, the network is clustered and each cluster is managed by a special peer, which is called a super-peer. A Super-peer has information of all the peers in its cluster. This type of clustered P2P model is known to have efficient information search and less traffic load than unclustered P2P model. In this paper, we compute the message traffic cost incurred by peers' query, join and update actions within a cluster as well as between the clusters. With these values, we estimate the optimal number of super-peers that minimizes the traffic cost for the various size of super-peer based P2P networks.

  • PDF

PSCF 모델을 활용한 부산지역 PM10의 발생원 추정 (Estimation of PM10 source locations in Busan using PSCF model)

  • 도우곤;정우식
    • 한국환경과학회지
    • /
    • 제24권6호
    • /
    • pp.793-806
    • /
    • 2015
  • The purpose of this study is to find out the air flow patterns affecting the PM10 concentration in Busan and the potential sources within each trajectory pattern. The synoptic air flow trajectories are classified into four clusters by HYSPLIT model and the potential sources of PM10 are estimated by PSCF model for each cluster from 2008 to 2012. The potential source locations of PM10 are compared with the distribution of PM10 anthropogenic emissions in east Asia developed in 2006 for the NASA INTEX-B mission. The annual mean concentrations of PM10 in Busan decreased from $51ug/m^3$ in 2008 to $43ug/m^3$ in 2012. The monthly mean concentrations of PM10 were high during a spring season, March to May and low during a summer season, August and September. The cluster2 composed of the air trajectories from the eastern China to Busan through the west sea showed the highest frequency, 44 %. The cluster1 composed of the air trajectories from the inner Mongolia region to Busan through the northeast area of China showed the second high frequency, 26 %. The cluster3 and 4 were composed of the trajectories originated in the southeast sea and the east sea of Busan respectively and showed low frequencies. The concentrations of in each cluster were $47ug/m^3$ in cluster1, $56ug/m^3$ in cluster2, $42ug/m^3$ in cluster3 and $37ug/m^3$ in cluster4. From these results, it was proved that the cluster1 and 2 composed of the trajectories originated in the east and northeast area of China were the causes of high PM10 concentrations in Busan. The results of PSCF and CWT model showed that the potential sources of the high PM10 concentrations were the areas of the around Mongolia and the eastern China having high emissions of PM10 from Beijing, Hebei to Shanghai through Shandong, Jiangsu.

합성된 평균과 분산을 가진 군집 식별 (Identification of Cluster with Composite Mean and Variance)

  • 김승구
    • Communications for Statistical Applications and Methods
    • /
    • 제18권3호
    • /
    • pp.391-401
    • /
    • 2011
  • 본 논문에서는 자료 내의 군집 중에 '부(父) 군집'과 모(母) 군집'이라 부르는 두 군집 사이에, 합성된 평균 분산을 가지는 '합성군집' 즉 '자식 군집'이라 부르는 한 군집이 있을 경우에 주목하여, 그들의 관계를 평균과 분산에 관해 모형화하고 각각의 군집을 식별하는 방법을 제공하였다. 관측치는 정규혼합모형을 따른다고 가정하고, EM 알고리즘을 통해 모형 추정을 시도하였다. 추정 과정에 여러 난제가 있었으나, 근사적 방법으로 비교적 잘 극복할수 있었다. 그리고 수치실험을 통해 제안방법은 성공적으로 주어진 세 군집 즉 '군집족(族)'을 식별할수 있음을 보였다.

Analyzing Clustered and Interval-Censored Data based on the Semiparametric Frailty Model

  • Kim, Jin-Heum;Kim, Youn-Nam
    • 응용통계연구
    • /
    • 제25권5호
    • /
    • pp.707-718
    • /
    • 2012
  • We propose a semi-parametric model to analyze clustered and interval-censored data; in addition, we plugged-in a gamma frailty to the model to measure the association of members within the same cluster. We propose an estimation procedure based on EM algorithm. Simulation results showed that our estimation procedure may result in unbiased estimates. The standard error is smaller than expected and provides conservative results to estimate the coverage rate; however, this trend gradually disappeared as the number of members in the same cluster increased. In addition, our proposed method was illustrated with data taken from diabetic retinopathy studies to evaluate the effectiveness of laser photocoagulation in delaying or preventing the onset of blindness in individuals with diabetic retinopathy.

서버 클러스터 환경에서 에너지 절약을 위한 향상된 서버 전력 소비 추정 모델 (An Improved Estimation Model of Server Power Consumption for Saving Energy in a Server Cluster Environment)

  • 김동준;곽후근;권희웅;김영종;정규식
    • 정보처리학회논문지A
    • /
    • 제19A권3호
    • /
    • pp.139-146
    • /
    • 2012
  • 서버 클러스터 환경에서 에너지 절약을 위한 방법 중 하나는 서버의 전원을 트래픽 상황에 맞게 제어하는 전원 제어 기술이다. 이는 현재 데이터 센터의 전체 에너지 사용량과 각 서버의 에너지 사용량을 파악하여 적절하게 ON/OFF 상태로 관리하는 기술이다. 이를 위해서 각 서버의 전력을 효과적으로 추정하는 방식이 필요한데, 본 논문에서는 비용 면과 에너지 면에서 효율적인 소프트웨어 방식의 추정 모델을 사용하여 전력을 추정한다. 또한 기존의 전력 추정 모델은 CPU의 유휴(idle) 사용량만을 사용함으로써 현재 서버의 세부적인 CPU 상태나 I/O 장치의 사용량을 정확히 파악하지 못하고, 이는 해당 서버의 전력을 효과적으로 추정하지 못하는 단점으로 이어진다. 본 논문에서는 CPU의 다양한 상태 필드를 활용하여 서버의 CPU 및 시스템의 전반적인 상태를 보다 정확히 파악하고, 이에 따라 서버의 전력을 기존의 두 소비전력 추정 모델(CPU/디스크/메모리 기반의 전력 소비 추정 모델 및 CPU 유휴값 기반의 전력 소비 추정 모델)보다 정확히 측정하는 CPU 필드(field) 기반의 전력 추정 모델을 제안한다. 2대의 서버를 사용하여 실험을 수행하였으며, 전력계를 통해 측정한 실제 전력과 각 추정 모델의 추정 값을 비교하여 평균 오차율을 계산하였다. 실험 결과 기존 소비전력 추정 모델이 평균 8-15%대의 오차율을 보이는 반면, 본 논문에서 제안하는 서버 전력 추정 모델은 2%대의 오차율을 보여 주었다.

군집 특정 변량효과를 포함한 유한 혼합 모형의 베이지안 분석 (Bayesian analysis of finite mixture model with cluster-specific random effects)

  • 이혜진;경민정
    • 응용통계연구
    • /
    • 제30권1호
    • /
    • pp.57-68
    • /
    • 2017
  • 대량의 데이터에 있어 전반적인 특성 및 구조를 파악하는데 유용하기 때문에 다양한 분야에서 군집분석을 사용하고 있다. Dempster 등 (1977)에서 정의된 expectation-maximization(EM) 알고리즘은 가장 보편적으로 사용되는 군집분석 방법이다. 선형모형의 유한혼합물(finite mixture of linear model) 기법 또한 군집분석 방법 중 많이 사용되는 방법이며 베이지안 군집방법은 Bernardo와 Giron (1988)이 군집에 대한 가중치 확률만 모를 경우 처음 적용하였다. 우리는 이 연구에서 일반적인 선형모형의 유한혼합물이 아닌 군집특정(cluster-specific) 변량효과를 모형에 포함하여 베이지안 분석방법인 깁스표집법(Gibbs sampling)을 사용한다. 제안한 모형의 특성 및 표집법에 대하여 설명하였고 모의실험 및 실제 데이터 분석을 통하여 모형의 유용성을 파악하였다. Hurn 등 (2003)의 CO2 데이터에 모형을 적용하여 변량효과가 없는 모형, 개체특정(subject-specific) 변량효과 모형과 비교하였다.