• Title/Summary/Keyword: Cluster based Routing

Search Result 260, Processing Time 0.031 seconds

A Study on the Efficient TICC(Time Interval Clustering Control) Algorithm using Attribute of Node (노드의 속성을 고려한 효율적인 TICC(Time Interval Clustering Control) 알고리즘에 관한 연구)

  • Kim, Young-Sam;Doo, Kyoung-Min;Lee, Kang-Whan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.9
    • /
    • pp.1696-1702
    • /
    • 2008
  • A MANET(Mobile Ad-hoc Network) is a multi-hop routing protocol formed by a collection without the intervention of infrastructure. So the MANET also depended on the property as like variable energy, high degree of mobility, location environments of nodes etc. Generally the various clustering technique and routing algorithm would have proposed for improving the energy efficiency. One of the popular approach methods is a cluster-based routing algorithm using in MANET. In this paper, we propose an algorithm techniques which is TICC (Time Interval Clustering Control) based on energy value in property of each node for solving cluster problem. It provides improving cluster energy efficiency how can being node manage to order each node's energy level. TICC could be able to manage the clustering, re-configuration, maintenance and detection of Node in MANET. Furthermore, the results of modeling shown that Node's energy efficiency and lifetime are improved in MANET.

Energy Improvement of WSN Using The Stochastic Cluster Head Selection (확률적 클러스터 헤드 선출 방법을 이용한 WSN 에너지 개선)

  • Lee, Jong-Yong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.1
    • /
    • pp.125-129
    • /
    • 2015
  • The most important factor within the wireless sensor network is to have effective network usage and increase the lifetime of the individual nodes in order to operate the wireless network more efficiently. Therefore, many routing protocols have been developed. The LEACH protocol presented by Wendi Heinzelman, especially well known as a simple and efficient clustering based routing protocol. However, because LEACH protocol in an irregular network is the total data throughput efficiency dropped, the stability of the cluster is declined. Therefore, to increase the stability of the cluster head, in this paper, it proposes a stochastic cluster head selection method for improving the LEACH protocol. To this end, it proposes a SH-LEACH(Stochastic Cluster Head Selection Method-LEACH) that it is combined to the HEED and LEACH protocol and the proposed algorithm is verified through the simulation.

Cluster-Based DSDV Routing Protocol in Mobile Ad Hoc Networts (이동 Ad Hoc 네트워크에서 클러스터 기반의 DSDV 라우팅 프로토콜)

  • Oh, Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.6A
    • /
    • pp.617-623
    • /
    • 2007
  • A novel c-DSDV routing protocol is proposed in clustered mobile ad hoc networks. Clusterheads that manage members in their own cluster construct a higher layer backbone to which the DSDV concept is applied. Each clusterhead maintains its own global routing table by exchanging Update Request (UREQ) messages with its neighboring clusterheads. A number of entries in the table is as small as a number of clusterheads unlike a number of nodes in DSDV Since a UREQ message travels from one clusterhead to all its neighboring clusterheads that are at most 3 hops away, the topology convergence range by each UREQ message is at least 9 times as wide as that of DSDV and CGSR, greatly improving accuracy of routing information. However, overhead in c-DSDV is similar to that of DSDV because only clusterheads initiate UREQ messages. Delivery ratio increases by about 32$\sim$50%.

A Beeline Routing Protocol for Heterogeneous WSN for IoT-Based Environmental Monitoring

  • Sahitya, G.;Balaji, N.;Naidu, C.D.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.10
    • /
    • pp.67-72
    • /
    • 2022
  • A wireless sensor network (WSN), with its constrained sensor node energy supply, needs an energy-efficient routing technique that maximises overall system performance. When rumours are routed using a random-walk routing algorithm, which is not highly scalable, spiral pathways may appear. Because humans think a straight line is the quickest route between two sites and two straight lines in a plane are likely to intersect, straight-line routing (SLR) constructs a straight path without the aid of geographic information. This protocol was developed for WSNs. As a result, sensor nodes in WSNs use less energy when using SLR. Using comprehensive simulation data, we show that our upgraded SLR systems outperform rumour routing in terms of performance and energy conservation.

Energy Efficient Cluster Head Selection and Routing Algorithm using Hybrid Firefly Glow-Worm Swarm Optimization in WSN

  • Bharathiraja S;Selvamuthukumaran S;Balaji V
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.8
    • /
    • pp.2140-2156
    • /
    • 2023
  • The Wireless Sensor Network (WSN), is constructed out of teeny-tiny sensor nodes that are very low-cost, have a low impact on the environment in terms of the amount of power they consume, and are able to successfully transmit data to the base station. The primary challenges that are presented by WSN are those that are posed by the distance between nodes, the amount of energy that is consumed, and the delay in time. The sensor node's source of power supply is a battery, and this particular battery is not capable of being recharged. In this scenario, the amount of energy that is consumed rises in direct proportion to the distance that separates the nodes. Here, we present a Hybrid Firefly Glow-Worm Swarm Optimization (HF-GSO) guided routing strategy for preserving WSNs' low power footprint. An efficient fitness function based on firefly optimization is used to select the Cluster Head (CH) in this procedure. It aids in minimising power consumption and the occurrence of dead sensor nodes. After a cluster head (CH) has been chosen, the Glow-Worm Swarm Optimization (GSO) algorithm is used to figure out the best path for sending data to the sink node. Power consumption, throughput, packet delivery ratio, and network lifetime are just some of the metrics measured and compared between the proposed method and methods that are conceptually similar to those already in use. Simulation results showed that the proposed method significantly reduced energy consumption compared to the state-of-the-art methods, while simultaneously increasing the number of functioning sensor nodes by 2.4%. Proposed method produces superior outcomes compared to alternative optimization-based methods.

Energy Efficient Cluster Routing Method Using Machine Learning in WSN (무선 센서 네트워크에서의 머신러닝을 활용한 에너지 효율적인 클러스터 라우팅 방안 연구)

  • Mi-Young, Kang
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.27 no.1
    • /
    • pp.124-130
    • /
    • 2023
  • In this paper, we intend to improve the network lifetime by improving the energy efficiency of sensor nodes in a wireless sensor network by utilizing machine learning using K-means clustering algorithm. A wireless sensor network is a wireless network composed of physical devices including batteries as physical sensors. Due to the characteristics of sensor nodes, all resources must be efficiently used to minimize energy consumption to maximize network lifetime. A cluster based approach is used to manage groups of relatively large numbers of nodes. In the proposed protocol, by improving the existing LEACH algorithm, we propose a clustering algorithm that selects a cluster head using a cluster based approach and a location based approach. The performance results to be improved were measured using Matlab simulation. Through the experimental results, K-means clustering was applied to the energy efficiency part. By utilizing K-means, it is confirmed that energy efficiency is improved and the lifetime of the entire network is extended.

Energy-efficient Positioning of Cluster Heads in Wireless Sensor Networks

  • Sohn, Surg-Won;Han, Kwang-Rok
    • Journal of IKEEE
    • /
    • v.13 no.1
    • /
    • pp.71-76
    • /
    • 2009
  • As one of the most important requirements for wireless sensor networks, prolonging network lifetime can be realized by minimizing energy consumption in cluster heads as well as sensor nodes. While most of the previous researches have focused on the energy of sensor nodes, we devote our attention to cluster heads because they are most dominant source of power consumption in the cluster-based sensor networks. Therefore, we seek to minimize energy consumption by minimizing the maximum(MINMAX) energy dissipation at each cluster heads. This work requires energy-efficient clustering of the sensor nodes while satisfying given energy constraints. In this paper, we present a constraint satisfaction modeling of cluster-based routing in a heterogeneous sensor networks because mixed integer programming cannot provide solutions to this MINMAX problem. Computational experiments show that substantial energy savings can be obtained with the MINMAX algorithm in comparison with a minimum total energy(MTE) strategy.

  • PDF

A Study on Secure Cluster Based Routing Protocol considering Distributed PKI Mechanisms (분산 PKI 메커니즘을 고려한 안전한 클러스터 기반 라우팅 프로토콜에 관한 연구)

  • Hahn, Gene-Beck;Nyang, Dae-Hun;Kim, Sin-Kyu;Seo, Sung-Hoon;Song, Joo-Seok
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2004.05a
    • /
    • pp.1299-1302
    • /
    • 2004
  • 본 연구에서는 MANET(Mobile Ad Hoc Network)에서 분산 PKI(Public Key Infrastructure) 메커니즘을 라우팅 프로토콜에 적용하기 위한 방법을 제안한다. 이를 위해 MANET이 사용하는 라우팅 프로토콜로 CBRP(Cluster Based Routing Protocol)를 고려한다. 제안하는 프로토콜은 CBRP의 기능과 분산 PKI 메커니즘을 활용하여 효율적으로 인증서 체인을 찾을 수 있고, 이를 통해 통신노드 상호간의 세션키 설정과 송수신하고자 하는 데이터에 대한 암호화를 지원한다. 또한, 라우팅 프로토콜의 안전한 동작을 위해 제안하는 프로토콜은 전자서명된 HELLO 메시지를 교환하여 악의적인 공격자들에 대해 신뢰성을 제공하고, 안전한 라우팅을 가능하게 한다.

  • PDF

A Short Path Data Routing Protocol for Wireless Sensor Network (단거리 데이터 전달 무선 센서네트워크 라우팅 기법)

  • Ahn, Kwang-Seon
    • The KIPS Transactions:PartC
    • /
    • v.14C no.5
    • /
    • pp.395-402
    • /
    • 2007
  • Wireless sensor networks have many sensor nodes which response sudden events in a sensor fields. Some efficient routing protocol is required in a sensor networks with mobile sink node. A data-path template is offered for the data announcement and data request from source node and sink node respectively. Sensed data are transferred from source node to sink node using short-distance calculation. Typical protocols for the wireless networks with mobile sink are TTDD(Two-Tier Data Dissemination) and CBPER(Cluster-Based Power-Efficient Routing). The porposed SPDR(Short-Path Data Routing) protocol in this paper shows more improved energy efficiencies from the result of simulations than the typical protocols.

A Study on Improvement of Energy Efficiency for LEACH Protocol in WSN (WSN에서 LEACH 프로토콜의 에너지 효율 향상에 관한 연구)

  • Lee, Won-Seok;Ahn, Tae-Won;Song, ChangYoung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.3
    • /
    • pp.213-220
    • /
    • 2015
  • Wireless sensor network(WSN) is made up of a lot of battery operated inexpensive sensors that, once deployed, can not be replaced. Therefore, energy efficiency of WSN is essential. Among the methods for energy efficiency of the network, clustering algorithms, which divide a WSN into multiple smaller clusters and separate all sensors into cluster heads and their associated member nodes, are very energy efficient routing technique. The first cluster-based routing protocol, LEACH, randomly elects the cluster heads in accordance with the probability. However, if the distribution of selected cluster heads is not good, uniform energy consumption of cluster heads is not guaranteed and it is possible to decrease the number of active nodes. Here we propose a new routing scheme that, by comparing the remaining energy of all nodes in a cluster, selects the maximum remaining energy node as a cluster head. Because of decrease in energy gap of nodes, the node that was a cluster head operates as a member node much over. As a result, the network lifespan is increased and more data arrives at base station.