• Title/Summary/Keyword: Cloud-IoT ecosystem

Search Result 9, Processing Time 0.027 seconds

An Intelligent Machine Learning Inspired Optimization Algorithm to Enhance Secured Data Transmission in IoT Cloud Ecosystem

  • Ankam, Sreejyothsna;Reddy, N.Sudhakar
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.6
    • /
    • pp.83-90
    • /
    • 2022
  • Traditional Cloud Computing would be unable to safely host IoT data due to its high latency as the number of IoT sensors and physical devices accommodated on the Internet grows by the day. Because of the difficulty of processing all IoT large data on Cloud facilities, there hasn't been enough research done on automating the security of all components in the IoT-Cloud ecosystem that deal with big data and real-time jobs. It's difficult, for example, to build an automatic, secure data transfer from the IoT layer to the cloud layer, which incorporates a large number of scattered devices. Addressing this issue this article presents an intelligent algorithm that deals with enhancing security aspects in IoT cloud ecosystem using butterfly optimization algorithm.

Changes in the Industrial Structure caused by the IoT and AI (사물인터넷과 AI가 가져올 산업구조의 변화)

  • Kim, Jang-Hwan
    • Convergence Security Journal
    • /
    • v.17 no.5
    • /
    • pp.93-99
    • /
    • 2017
  • Recently IoT(Internet of Things) service industry has grown very rapidly. In this paper, we investigated the changes in IoT service industry as well as new direction of human life in future global society. Under these changing market conditions, competition has been also changed into global and ecological competition. But compared to the platform initiatives and ecological strategies of global companies, Korean companies' vision of building ecosystems is still unclear. In addition, there is a need of internetworking between mobile and IoT services. IoT security Protocol has weakness of leaking out information from Gateway which connected wire and wireless communication. As such, we investigate the structure of IoT and AI service ecosystem in order to gain strategic implications and insights for the security industry in this paper.

A Study on the System for measuring the Activity of Honeybees inside and outside the Beehive

  • Kim, Joon Ho;Han, Wook;Chung, Wonki;Mo, Changyeon;Han, Xiongzhe;Kim, Subae
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.4
    • /
    • pp.511-517
    • /
    • 2022
  • Recently, due to rapid climate change, the population of honey bees has decreased, posing a great threat to the existence of the Earth's ecosystem. In particular, the colony collapse phenomenon in which bees disappeared nationwide in early 2022 had devastating consequences for beekeepers. In order to solve the problems of beekeeping due to climate change, it is urgent to develop a system that can monitor the situation inside the hive through various IoT sensors. This paper develops a system that can measure the activity of bees inside the hive and uses it to measure the number of times of entry and exit of the hive. The data measured by the developed system can be monitored in real time on a smartphone through the cloud server. The system developed in this paper can monitor the ecology of bees according to climate change and measure internal and external bee activities. Using this method, it is possible to check in advance for the colony collapse phenomenon in which bees disappeared in early 2022. This is very meaningful in that it presents an alternative that can identify the cause of the problem through early detection.

A Study on Business Types of IoT-based Smarthome: Based on the Theory of Platform Typology (IoT 기반 스마트홈 비즈니스 유형 연구: 플랫폼유형론을 근간으로)

  • Song, Minzheong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.2
    • /
    • pp.27-40
    • /
    • 2016
  • This paper aims to analyze the business types of 237 IoT based smart home companies in the world (launched during 1999~2014) which got global investment last few years. For this, the previous literatures trying to analze technology and service types of smart home are searched and the typology of the platform is discussed. Based on it, this research conceptualizes an analysis framework that includes three areas of smart home like home automation, home security, and energy efficiency with the three platform types like product, software, and service. This study concludes that the development of business type for IoT based smart home ecosystem is from the product to software and it can be a platform or not. In current status, there are a few platforms of product and software, but in the device management (16%) and thermostat (11%), companies are persuing more platform like. It is difficult to find the service platform in overall areas, for application based service has a few attractions in the investment market due to the lack of cloud infrastructure and data analytics. The following three are the implication to domestic market: 1) More active offering of API and SDK, 2) more active introduction of wireless Intenet network protocols, and 3) more active interoperability efforts and alliance activities are needed.

Requirement Analysis for Agricultural Meteorology Information Service Systems based on the Fourth Industrial Revolution Technologies (4차 산업혁명 기술에 기반한 농업 기상 정보 시스템의 요구도 분석)

  • Kim, Kwang Soo;Yoo, Byoung Hyun;Hyun, Shinwoo;Kang, DaeGyoon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.3
    • /
    • pp.175-186
    • /
    • 2019
  • Efforts have been made to introduce the climate smart agriculture (CSA) for adaptation to future climate conditions, which would require collection and management of site specific meteorological data. The objectives of this study were to identify requirements for construction of agricultural meteorology information service system (AMISS) using technologies that lead to the fourth industrial revolution, e.g., internet of things (IoT), artificial intelligence, and cloud computing. The IoT sensors that require low cost and low operating current would be useful to organize wireless sensor network (WSN) for collection and analysis of weather measurement data, which would help assessment of productivity for an agricultural ecosystem. It would be recommended to extend the spatial extent of the WSN to a rural community, which would benefit a greater number of farms. It is preferred to create the big data for agricultural meteorology in order to produce and evaluate the site specific data in rural areas. The digital climate map can be improved using artificial intelligence such as deep neural networks. Furthermore, cloud computing and fog computing would help reduce costs and enhance the user experience of the AMISS. In addition, it would be advantageous to combine environmental data and farm management data, e.g., price data for the produce of interest. It would also be needed to develop a mobile application whose user interface could meet the needs of stakeholders. These fourth industrial revolution technologies would facilitate the development of the AMISS and wide application of the CSA.

Study on Analysis of Queen Bee Sound Patterns (여왕벌 사운드 패턴 분석에 대한 연구)

  • Kim Joon Ho;Han Wook
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.5
    • /
    • pp.867-874
    • /
    • 2023
  • Recently, many problems are occurring in the bee ecosystem due to rapid climate change. The decline in the bee population and changes in the flowering period are having a huge impact on the harvest of bee-keepers. Since it is impossible to continuously observe the beehives in the hive with the naked eye, most people rely on knowledge based on experience about the state of the hive.Therefore, interest is focused on smart beekeeping incorporating IoT technology. In particular, with regard to swarming, which is one of the most important parts of beekeeping, we know empirically that the swarming time can be determined by the sound of the queen bee, but there is no way to systematically analyze this with data.You may think that it can be done by simply recording the sound of the queen bee and analyzing it, but it does not solve various problems such as various noise issues around the hive and the inability to continuously record.In this study, we developed a system that records queen bee sounds in a real-time cloud system and analyzes sound patterns.After receiving real-time analog sound from the hive through multiple channels and converting it to digital, a sound pattern that was continuously output in the queen bee sound frequency band was discovered. By accessing the cloud system, you can monitor sounds around the hive, temperature/humidity inside the hive, weight, and internal movement data.The system developed in this study made it possible to analyze the sound patterns of the queen bee and learn about the situation inside the hive. Through this, it will be possible to predict the swarming period of bees or provide information to control the swarming period.

Development of Contents on the Marine Meteorology Service by Meteorology and Climate Big Data (기상기후 빅데이터를 활용한 해양기상서비스 콘텐츠 개발)

  • Yoon, Hong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.2
    • /
    • pp.125-138
    • /
    • 2016
  • Currently, there is increasing demand for weather information, however, providing meteorology and climate information is limited. In order to improve them, supporting the meteorology and climate big data platform use and training the meteorology and climate big data specialist who meet the needs of government, public agencies and corporate, are required. Meteorology and climate big data requires high-value usable service in variety fields, and it should be provided personalized service of industry-specific type for the service extension and new content development. To provide personalized service, it is essential to build the collaboration ecosystem at the national level. Building the collaboration ecosystem environment, convergence of marine policy and climate policy, convergence of oceanography and meteorology and convergence of R&D basic research and applied research are required. Since then, demand analysis, production sharing information, unification are able to build the collaboration ecosystem.

The Study of System Visibility of Universal Middleware Pervasive Memorial Engine (시스템가시성평가를 위한 유니버설미들웨어기반 Pervasive Memorial Engine 연구)

  • Lee, Hae-Jun;Hwang, Chi-Gon;Yoon, Chang-Pyo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.335-338
    • /
    • 2017
  • Presently, the collaboration hardware system and software technology that promoted commercializing ICBMS for integrated system visibility evaluation. This variation will move on the next pervasive period that mixed with cultural and technology convergence. There is possibility for the period system can invoke unpredictable confusing blank state. The blank state systems have ecosystem characteristics that are supplied, maintained and operated through the complex interactions of technology and culture. Using universal middleware can support the life-cycle model and increase the visibility of complex systems and prepare for confusing situations. In this study, based on universal middleware, data and service dynamic standardized modules were evaluated to support stable system visibility platform. The system visibility module consists of Intelligent Pervasive Cloud module, Memorial Service module and Life Cycler connection module. each module reflects various requirements of system visibility requested by external system. In addition, the analysis results are supported by various network application service standards through platform independent system and architecture.

  • PDF

Device Virtualization Framework for Smart Home Cloud Service (스마트홈 클라우드 서비스를 위한 디바이스 가상화 프레임워크)

  • Kim, Kyungwon;Park, Jongbin;Kum, Seungwoo;Jung, Jongjin;Yang, Chang-Mo;Lim, Taebeom
    • Telecommunications review
    • /
    • v.24 no.5
    • /
    • pp.677-691
    • /
    • 2014
  • Connectivity is becoming more important keywords recently. For example, many devices are going to be connected to the internet. It is usually called as the IoT(internet of things). Many IoT devices can be evolved as a part of giant system of the world wide web. It is a great opportunity for us, because many new services can have emerged through this paradigm. In this paper, we propose a device virtualization framework for smart home service. The proposed framework connects the many home appliances devices and the internet using a dynamic protocol conversion. After our protocol conversion for device virtualization, our framework provides a RESTful API to access the resources of device through the internet. Therefore, the proposed framework can provide a variety of services, so it also can be developed into the ecosystem for smart home service. The current framework version only supports UPnP enabled devices of the home, but it can easily be extended to many other home middleware solutions. To verify the feasibility of the framework, we have implemented several service scenarios.