• Title/Summary/Keyword: Cloud resources

Search Result 561, Processing Time 0.032 seconds

Semantic Interoperability Framework for IAAS Resources in Multi-Cloud Environment

  • Benhssayen, Karima;Ettalbi, Ahmed
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.2
    • /
    • pp.1-8
    • /
    • 2021
  • Cloud computing has proven its efficiency, especially after the increasing number of cloud services offered by a wide range of cloud providers, from different domains. Despite, these cloud services are mostly heterogeneous. Consequently, and due to the rising interest of cloud consumers to adhere to a multi-cloud environment instead of being locked-in to one cloud provider, the need for semantically interconnecting different cloud services from different cloud providers is a crucial and important task to ensure. In addition, considerable research efforts proposed interoperability solutions leading to different representation models of cloud services. In this work, we present our solution to overcome this limitation, precisely in the IAAS service model. This solution is a framework permitting the semantic interoperability of different IAAS resources in a multi-cloud environment, in order to assist cloud consumers to retrieve the cloud resource that meets specific requirements.

An Analysis of Spot Cloud in Cloud Computing

  • Mansoor, Usman;Mehmood, Usman;Khan, Faraz Idris;Kim, Ki-Hyung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.04a
    • /
    • pp.242-245
    • /
    • 2011
  • Cloud Computing is a fast developing domain in computer system architecture which enables dynamically scalable and virtualized resources to its users. Spot Cloud is the next evolutionary step in this field which allows the cloud computing resources to be treated as a market commodity. Cloud computing vendors will now be able to put their un used computational resources for sale using the singular access platform provided by Spot Cloud. Meanwhile customers will be able to buy/sell these resources according to their requirements. This paper analyzes the idea of Spot Cloud and the anticipated impact it will have on Cloud Computing globally. The paper also presents the risks and inherent barriers associated with this idea and how they might hinder the development of Spot Cloud to its full potential.

Semantic Cloud Resource Recommendation Using Cluster Analysis in Hybrid Cloud Computing Environment (군집분석을 이용한 하이브리드 클라우드 컴퓨팅 환경에서의 시맨틱 클라우드 자원 추천 서비스 기법)

  • Ahn, Younsun;Kim, Yoonhee
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.4 no.9
    • /
    • pp.283-288
    • /
    • 2015
  • Scientists gain benefits from on-demand scalable resource provisioning, and various computing environments by using cloud computing resources for their applications. However, many cloud computing service providers offer their cloud resources according to their own policies. The descriptions of resource specification are diverse among vendors. Subsequently, it becomes difficult to find suitable cloud resources according to the characteristics of an application. Due to limited understanding of resource availability, scientists tend to choose resources used in previous experiments or over-performed resources without considering the characteristics of their applications. The need for standardized notations on diverse cloud resources without the constraints of complicated specification given by providers leads to active studies on intercloud to support interoperability in hybrid cloud environments. However, projects related to intercloud studies are limited as they are short of expertise in application characteristics. We define an intercloud resource classification and propose semantic resource recommendation based on statistical analysis to provide semantic cloud resource services for an application in hybrid cloud computing environments. The scheme proves benefits on resource availability and cost-efficiency with choosing semantically similar cloud resources using cluster analysis while considering application characteristics.

An Efficient VM-Level Scaling Scheme in an IaaS Cloud Computing System: A Queueing Theory Approach

  • Lee, Doo Ho
    • International Journal of Contents
    • /
    • v.13 no.2
    • /
    • pp.29-34
    • /
    • 2017
  • Cloud computing is becoming an effective and efficient way of computing resources and computing service integration. Through centralized management of resources and services, cloud computing delivers hosted services over the internet, such that access to shared hardware, software, applications, information, and all resources is elastically provided to the consumer on-demand. The main enabling technology for cloud computing is virtualization. Virtualization software creates a temporarily simulated or extended version of computing and network resources. The objectives of virtualization are as follows: first, to fully utilize the shared resources by applying partitioning and time-sharing; second, to centralize resource management; third, to enhance cloud data center agility and provide the required scalability and elasticity for on-demand capabilities; fourth, to improve testing and running software diagnostics on different operating platforms; and fifth, to improve the portability of applications and workload migration capabilities. One of the key features of cloud computing is elasticity. It enables users to create and remove virtual computing resources dynamically according to the changing demand, but it is not easy to make a decision regarding the right amount of resources. Indeed, proper provisioning of the resources to applications is an important issue in IaaS cloud computing. Most web applications encounter large and fluctuating task requests. In predictable situations, the resources can be provisioned in advance through capacity planning techniques. But in case of unplanned and spike requests, it would be desirable to automatically scale the resources, called auto-scaling, which adjusts the resources allocated to applications based on its need at any given time. This would free the user from the burden of deciding how many resources are necessary each time. In this work, we propose an analytical and efficient VM-level scaling scheme by modeling each VM in a data center as an M/M/1 processor sharing queue. Our proposed VM-level scaling scheme is validated via a numerical experiment.

A Enhanced Security Model for Cloud Computing in SSO Environment

  • Jang, Eun-Gyeom
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.8
    • /
    • pp.55-61
    • /
    • 2017
  • Cloud computing is cost-effective in terms of system configuration and maintenance and does not require special IT skills for management. Also, cloud computing provides an access control setting where SSO is adopted to secure user convenience and availability. As the SSO user authentication structure of cloud computing is exposed to quite a few external security threats in wire/wireless network integrated service environment, researchers explore technologies drawing on distributed SSO agents. Yet, although the cloud computing access control using the distributed SSO agents enhances security, it impacts on the availability of services. That is, if any single agent responsible for providing the authentication information fails to offer normal services, the cloud computing services become unavailable. To rectify the environment compromising the availability of cloud computing services, and to protect resources, the current paper proposes a security policy that controls the authority to access the resources for cloud computing services by applying the authentication policy of user authentication agents. The proposed system with its policy of the authority to access the resources ensures seamless and secure cloud computing services for users.

A study of Modeling and Simulation for the Availability Optimization of Cloud Computing Service (클라우드 컴퓨팅 서비스의 가용성 최적화를 위한 모델링 및 시뮬레이션)

  • Jang, Eun-Young;Park, Choon-Sik
    • Journal of the Korea Society for Simulation
    • /
    • v.20 no.1
    • /
    • pp.1-8
    • /
    • 2011
  • Cloud computing emerges as a new paradigm for deploying, managing and offering IT resources as a service anytime, anywhere on any devices. Cloud computing data center stores many IT resources through resource integration. So cloud computing system has to be designed by technology and policy to make effective use of IT resources. In other words, cloud vendor has to provide high quality services to all user and mitigate the dissipation of IT resources. However, vendors need to predict the performance of cloud services and the use of IT resources before releasing cloud service. For solving the problem, this research presents cloud service modeling on network environment and evaluation index for availability optimization of cloud service. We also study how to optimize an amount of requested cloud service and performance of datacenter using CloudSim toolkit.

Deep Learning Based Security Model for Cloud based Task Scheduling

  • Devi, Karuppiah;Paulraj, D.;Muthusenthil, Balasubramanian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.9
    • /
    • pp.3663-3679
    • /
    • 2020
  • Scheduling plays a dynamic role in cloud computing in generating as well as in efficient distribution of the resources of each task. The principle goal of scheduling is to limit resource starvation and to guarantee fairness among the parties using the resources. The demand for resources fluctuates dynamically hence the prearranging of resources is a challenging task. Many task-scheduling approaches have been used in the cloud-computing environment. Security in cloud computing environment is one of the core issue in distributed computing. We have designed a deep learning-based security model for scheduling tasks in cloud computing and it has been implemented using CloudSim 3.0 simulator written in Java and verification of the results from different perspectives, such as response time with and without security factors, makespan, cost, CPU utilization, I/O utilization, Memory utilization, and execution time is compared with Round Robin (RR) and Waited Round Robin (WRR) algorithms.

The Security Architecture for Secure Cloud Computing Environment

  • Choi, Sang-Yong;Jeong, Kimoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.12
    • /
    • pp.81-87
    • /
    • 2018
  • Cloud computing is a computing environment in which users borrow as many IT resources as they need to, and use them over the network at any point in time. This is the concept of leasing and using as many IT resources as needed to lower IT resource usage costs and increase efficiency. Recently, cloud computing is emerging to provide stable service and volume of data along with major technological developments such as the Internet of Things, artificial intelligence and big data. However, for a more secure cloud environment, the importance of perimeter security such as shared resources and resulting secure data storage and access control is growing. This paper analyzes security threats in cloud computing environments and proposes a security architecture for effective response.

Dynamic Cloud Resource Reservation Model Based on Trust

  • Qiang, Jiao-Hong;Ning, Ding-Wan;Feng, Tian-Jun;Ping, Li-Wei
    • Journal of Information Processing Systems
    • /
    • v.14 no.2
    • /
    • pp.377-395
    • /
    • 2018
  • Aiming at the problem of service reliability in resource reservation in cloud computing environments, a model of dynamic cloud resource reservation based on trust is proposed. A domain-specific cloud management architecture is designed in which resources are divided into different management domains according to the types of service for easier management. A dynamic resource reservation mechanism (DRRM) is used to test users' reservation requests and reserve resources for users. According to user preference, several resources are chosen to be candidate resources by fuzzy cluster analysis. The fuzzy evaluation method and a two-way trust evaluation mechanism are adopted to improve the availability and credibility of the model. An analysis and simulation experiments show that this model can increase the flexibility of resource reservation and improve user satisfaction.

A Two-Step Job Scheduling Algorithm Based on Priority for Cloud Computing

  • Kim, Jeongwon
    • Journal of information and communication convergence engineering
    • /
    • v.11 no.4
    • /
    • pp.235-240
    • /
    • 2013
  • Cloud systems are popular computing environment because they can provide easy access to computing resources for users as well as efficient use of resources for companies. The resources of cloud computing are heterogeneous and jobs have various characteristics. One such issue is effective job scheduling. Scheduling in the cloud system may be defined as a multiple criteria decision model. To address this issue, this paper proposes a priority-based two-step job scheduling algorithm. On the first level, jobs are classified based on preference. Resources are dedicated to a job if a deadline failure would cause severe results or critical business losses. In case of only minor discomfort or slight functional impairment, the job is scheduled using a best effort approach. On the second level, jobs are allocated to adequate resources through their priorities that are calculated by the analytic hierarchic process model. We then analyze the proposed algorithm and make a scheduling example to confirm its efficiency.