
 235

I. INTRODUCTION

Under a cloud computing environment, which is Internet-

based computing, users can utilize resources such as

computing software, hardware performance monitoring, and

information systems for public utilities like gas, electricity,

and water. As a result, because of the cloud system’s

centralized storage, memory processing, hardware, and

bandwidth, this system can provide an efficient and low-cost

computing environment [1].

On the other hand, handling jobs efficiently in cloud

services is a problem that remains to be solved. In general,

the job scheduling problem has been a major research topic

of grid and cloud computing. Static or dynamic algorithms

have been proposed in a single workflow in order to achieve

optimum performance. The schemes are mainly focused

on scheduling completion time guarantees and latency

reduction techniques.

These techniques are mainly best-effort scheduling

algorithms. However, the scheduling in cloud computing

algorithms has different requirements because of the

importance of how quickly a certain level of resources can

be allocated and how much of the resource is dedicated to a

job [2]. In addition, as cloud computing users have a variety

of levels of the use of services, a wide range of scalability,

and this is dynamically set through virtualization, jobs

should be scheduled in different ways.

A scheduling algorithm in the cloud environment must

take into special consideration that the storage and data

transfer costs of data-oriented jobs continue to grow

exponentially as time passes. Therefore, this study proposes

a new scheduling algorithm that takes into consideration the

Received 07 March 2013, Revised 30 June 2013, Accepted 17 July 2013
*Corresponding Author Jeongwon Kim (E-mail: jwkim@silla.ac.kr, Tel: +82-51-999-5749)
Department of Computer Engineering, Silla University, 140 Baegyang-daero 700beon-gil, Sasang-gu, Busan 617-736, Korea.

 http://dx.doi.org/10.6109/jicce.2013.11.4.235 print ISSN: 2234-8255 online ISSN: 2234-8883

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/li-censes/by-

nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Copyright ⓒ The Korea Institute of Information and Communication Engineering

J. lnf. Commun. Converg. Eng. 11(4): 235-240, Dec. 2013 Regular paper

A Two-Step Job Scheduling Algorithm Based on Priority for

Cloud Computing

Jeongwon Kim
*

, Member, KIICE

Department of Computer Engineering, Silla University, Busan 617-736, Korea

Abstract

Cloud systems are popular computing environment because they can provide easy access to computing resources for users as

well as efficient use of resources for companies. The resources of cloud computing are heterogeneous and jobs have various

characteristics. One such issue is effective job scheduling. Scheduling in the cloud system may be defined as a multiple

criteria decision model. To address this issue, this paper proposes a priority-based two-step job scheduling algorithm. On the

first level, jobs are classified based on preference. Resources are dedicated to a job if a deadline failure would cause severe

results or critical business losses. In case of only minor discomfort or slight functional impairment, the job is scheduled using

a best effort approach. On the second level, jobs are allocated to adequate resources through their priorities that are calculated

by the analytic hierarchic process model. We then analyze the proposed algorithm and make a scheduling example to confirm

its efficiency.

Index Terms: Analytic hierarchic process, Cloud computing, Job Scheduling, Priority

Open Access

J. lnf. Commun. Converg. Eng. 11(4): 235-240, Dec. 2013

http://dx.doi.org/10.6109/jicce.2013.11.4.235 236

characteristics of each job.

The proposed scheme is divided into two steps: the first

step is to classify jobs by their degree of importance, and the

second step is to assign resources to each job. In the first

step, if missing a deadline may bring about severe results or

critical business losses, resources are dedicated to that job

(resource provisioning). If a deadline failure would cause

only minor discomfort or slight functional impairment, the

job is scheduled using a best effort approach (best effort). In

the second step, jobs are assigned to a virtual machine (VM)

to catch the user's quality of service (QoS) and maximize

the efficiency of cloud computing.

In a cloud environment, many nodes exist, and the

reliabilities of all heterogeneous nodes are inevitably low.

This allocation issue can be defined as a kind of multi-

criteria decision making (MCDM) because responsiveness,

cost, and loads of jobs have variability in terms of QoS.

Therefore, our work uses the analytic hierarchic process

(AHP) method to solve this allocation issue and our

scheduling algorithm chooses a VM to run the job by

determining the priorities of the alternatives for the various

decision criteria.

This paper is organized as follows: The research related to

the proposed algorithm is described in Section II. In Section

III, our new algorithm is introduced in detail. In Section IV,

the effectiveness of our algorithm is analyzed and verified.

We then discuss conclusions and future work in Section V.

II. RELATED WORKS

Many studies have addressed job scheduling in grid and

cloud environments. There are online and offline schemes in

the case of batch job scheduling which are known to be

suitable for scientific applications. This paper is focused on

the scheduling of real-time requests.

Yu et al. [3] proposed a cost-based workflow scheduling

algorithm considering the minimization of the execution

cost in which it satisfies the deadline. Yu and Buyya [4]

proposed a scheduling technique to minimize the execution

time while satisfying workflow execution cost. In this

scheduling approach, a genetic algorithm was applied to

solve the optimization problem and experimental results

were presented for a grid environment. Padala et al. [5]

proposed an algorithm that satisfies the QoS of workflows

and can improve resource utilization between applications

by adjusting resource sharing. Yu and Shi [6] proposed

a plan-based algorithm for multiple workflows that det-

ermines the execution order with rankings of workflows.

Xu et al. [7] proposed a scheduling algorithm to support

multiple workflows and nested multiple QoS requirements.

They further showed that the scheme can improve

scheduling accessibility. Kosinska et al. [8] proposed a

variety of phases to improve the reliability and scalability of

the applications that run on cloud resources. Ghanbaria and

Othman [9] reported on a technique similar to this study.

Their scheme used the AHP technique to determine a job’s

priority, the attribute level of cloud resources, and the

alternative to a job. On the other hand, our study obeys the

basic principle of the AHP model. In our custom model, the

attribute level defines decision criteria. This level deter-

mines which criteria, such as responsiveness, cost, and

system load, are preferable for choosing alternatives. The

alternative level is defined as a resource allocation unit. This

unit is meant as a VM in our scheme to determine which

VM is more adequate for executing a job.

III. TWO-STEP JOB SCHEDULING SCHEME

BASED ON PRIORITY

The proposed scheduling scheme in this paper is

composed of two steps. In the first step, the priority of a job

is calculated based on the degree of importance of each job.

In the second step, the algorithm selects a VM on which to

run the job. Every candidate VM is weighted using the AHP

model.

A. First Step: Job Classification Based on Its
Degree of Importance

As all resources in cloud computing are dedicated to jobs,

it is advantageous for a cloud system to secure the resources

needed in advance. In the case of data-oriented jobs, this

resource provisioning will be an especially important factor

in performance improvement because the required storage

as well as bandwidth increases with time passing. Thus, our

scheme classifies all jobs into one of two categories:

resource provisioning or best effort.

In this step, the jobs for which the user pays a high cost or

that are of higher importance belong to the resource

provisioning case. If scheduling failures of jobs may bring

about severe business loss, the jobs are classified to the first

level of priority or the highest level. If the failures may

cause considerable after-effects, these jobs belong to the

second level of priority. Jobs for which the user pays regular

or low costs or are of medium importance belong to the best

effort case. If scheduling failures of jobs may bring about a

trivial inconvenience to a small number of users, the jobs

are classified into the third level of priority. If the failures

may cause minor functional impairments, these jobs belong

to the fourth level or the lowest priority. The classified jobs

are queued in order in the cloud system scheduler. The

sequences are fixed, and the jobs are executed in a non-

preemptive way. The jobs with the same priority are served

in a round-robin manner.

A Two-Step Job Scheduling Algorithm Based on Priority for Cloud Computing

http://jicce.org 237

Fig. 1. The analytic hierarchic process model to place jobs on the virtual

machine (VM).

B. Second Step: Job Allocation to VM Based
on the AHP Model

The AHP is a kind of MCDM that helps to choose one of

the alternatives. Each selection has a related attribute

attached to it, and the weights of each attribute are set.

Therefore, the AHP model can select the best choice out of

the list of alternatives. The merit of the AHP is that it

considers variable parameters for many alternatives and

generates the result that best matches the parameters [10].

The proposed scheme uses an AHP model for the VM

selection.

As Fig. 1 shows, the objective level in the proposed

algorithm is to place a job in a VM that it best matches

under many different parameters. The attribute level in our

algorithm is composed of user requirements or decision

criteria such as response time, system utilization, and cost,

and the alternative level represents all VMs in a cloud

system.

As each parameter in the AHP model has a preference,

the proposed scheme also has a preference from 1 to 9. The

preference 9 is the highest one. The values 2, 4, 6, and 8 are

intermediate values for the preference, and the inverse

number represents the counterpart preference. Therefore,

these preference values are used in representing and

calculating the requirements of the job as well as parameters

of each VM, such as the response time, system utilization,

and cost.

Suppose that a set of jobs, which are scheduling objects in

cloud environment, is ζ = {J1,J2,…,Jm}, and the criteria set

is ψ = {C1,C2,…,Cn}, and set of VMs is ξ = {VM1,

VM2,…,VMv}.

The VM allocation is done in two steps. In the first step,

the algorithm calculates the weight vector by pairwise

comparison and does a consistency check for both of the

levels. In the second step, the best VM is selected by

multiplying the two weight vectors of each level. The

process is explained in detail below.

Sub-step 1: Calculation of the weight matrix and consis-

tency index between the objective and attribute level.

����,� = � 1����,�
, � ≠ �

1	,											� = �	 ≫

��

��

⋯
��

��

⋮ ⋱ ⋮
��

��

⋯
��

��

� ��

⋮�

� = ���	 ��

⋮�

�
.

 (1)

Suppose that the pairwise comparison matrix between the

objective level and attribute level is named “pairwise

comparison matrix (PCM)” in this paper. This PCM

represents the preference for a job under all criteria such as

responsiveness, system utilization, and cost. The PCM is an

n by n matrix like Eq. (1). If the element of PCM, (i,j) is 5,

the preference of PCM(j,i) will be 1/5. There are n pairwise

comparison matrices for all criteria, which are created

according to the priority of the decision criteria. For each of

the comparison matrices, the scheme should compute a

priority vector (vector of weights). The priority vector can

be obtained by solving Eq. (2). The λmax is the principal

eigenvalue of PCM and is denoted by the corresponding

eigenvector ω
criteria

. With any arbitrary comparison of PCM,

the model can produce a vector of weights such as ωcriteria =

{ω1, ω2, …, ωn}. An essential step in this model is to obtain a

vector of weights. The vector of weights can be computed

through Eq. (2). A positive n by n matrix has the ratio form

PCM = (wi/wj), i,j = 1, ..., n, if, and only if, it is consistent.

The matrix of ratios PCM = (wi/wj) is consistent if and only

if n is its principal eigenvalue and PCM∙ωcriteria =

λmax∙ωcriteria. Further, ωcriteria

> 0 is unique to within a

multiplicative constant.

PCM × �
������ = 	 ���	 × �
������
. (2)

Saaty [10] has defined the consistency ratio (CR) as

Eq. (3).

CR=
��

��
,�ℎ���	�� =

������

�

.

 (3)

In Eq. (3), RI is the random index, which is randomly

calculated based on the rank of the comparison matrix. Eq.

(3) also uses the RI values, which were calculated by Saaty

[10]. If CR < 0.1, then the PCM should be considered

consistent.

Sub-step 2: Calculation of the weight matrix and consis-

tency index between the attribute and alternative level.

Which VM is scheduled to a job? Objective level

Attributes level

Alternative level

Response time System utilization Cost

VM 1 VM2 VMv
………

J. lnf. Commun. Converg. Eng. 11(4): 235-240, Dec. 2013

http://dx.doi.org/10.6109/jicce.2013.11.4.235 238

The next step is also to calculate the weight matrix and

consistency index for each decision criterion to all VMs.

Like Eqs. (1)–(3), this scheme determines the pairwise

comparison matrix and calculates the weight matrix and

consistency ratios for each of the decision criteria to each

VM.

Suppose that the weight vector for each VM is

ωvm={ω1,ω2,…,ωv}, and ωvm

is a v by n matrix. The v is the

number of the VMs and the n is the number of the decision

criteria. We then obtain the final score for each VM by

multiplying the weight vector of each sub-step 1 by the

weight matrix of the sub-step 2. The number of elements of

the score vector in Eq. (4) is v. The index of maximum value

means a VM that will execute the job.

score = ω�� × ω�������	 , (4)

where	�ω��	��	�	��		, ω�������		��			��	1
.

IV. ANALYSIS AND EXAMPLE OF THE

PROPOSED SCHEDULING ALGORITHM

First, we analyze the proposed scheme by time complexity.

As the priority classification of the first step is determined

by job characteristics or requirements, the time complexity

may be trivial. The computation of the pairwise comparison

matrix and CR occupies a huge portion of complexity in the

proposed scheme, such as Eq. (5).

 � = 	�.� + 	 × ��.� + � × 	�.� . (5)

In Eq. (6), n is the number of the decision criteria and v is

the number of the VMs, and d denotes the number of the

eliminated matrices because of inconsistency while che-

cking CR. In Eq. (6), ��.�� are the additions and the

multiplications in the calculation of the weight vector from

the objective level to the attribute level. The � × �
�.�� is

the arithmetic operations in the computation of the weight

matrix from the attributes level to the alternative level.

Furthermore, if the candidate pairwise matrix is rejected in

the consistency check, the matrix must be recalculated in

� × �
�.�� times. Thus, the final time complexity may be

determined by Eq. (6).

� = max��,	���.� ∗ [� > 		?	:�]. (6)

The time complexity for multiplying n by n matrices

requires O(n
3
) multiplications that are of worst case

complexity. The fastest known algorithm, devised by Don

Coppersmith and Shmuel Winograd, runs in O(n
2.38

) time

[11]. Most researchers believe that an optimal algorithm will

run in essentially O(n
2
) time, yet until recently, no further

progress has been made in finding one [12]. Therefore, the

best case complexity is O(n
2.38

), and the worst case com-

plexity of the proposed scheme is O(n
3
), and a general case

of time complexity is n
2.38

 or v
2.38

.

However, as the number

of VMs is generally greater than the decision criteria, the

complexity of the proposed algorithm should be described

as � × �
�.��.

The following is an example of the proposed scheduling

algorithm. Table 1 is a sample preference matrix of a job.

The following Eq. (7) is a PCM and weight vector.

PCM = �0.222 0.250 0.217

0.111 0.125 0.130

0.667 0.625 0.652

�,

����ℎ�	������ = �0.2300.122

0.648

�		
.
																																				(7)

For obtaining the CR, we first multiply the preference

matrix by the eigenvalue of the weight vector as shown

below Eq. (8):

0.230 × � 10.5
3

�+ 0.122 × �21
5

�+ 0.648 × �0.3330.2

1

�

= �0.230 0.244 0.216

0.115 0.122 0.130

0.690 0.611 0.648

�
.

 (8)

From Eqs. (2) and (3), we now can get the ��	� = 3.004

and CR is 0.002. As the CR is smaller than 0.1, this

preference matrix must be consistent.

Table 1. Preference matrix example of a job

 Response time System utilization Cost

Response time 1 2 1/3

System utilization 1/2 1 1/5

Cost 3 5 1

Table 2. λmax and consistency ratio (CR) for response time

 VM1 VM2 VM3 VM4 VM5 Weight

VM1 1 2 1/3 4 1/2 0.166

VM2 1/2 1 1/5 2 1/5 0.086

VM3 3 5 1 6 2 0.433

VM4 1/5 1/2 1/6 1 1/3 0.059

VM5 2 4 1/2 3 1 0.255

 λmax = 5.122, CR = 0.022 (<0.1)

A Two-Step Job Scheduling Algorithm Based on Priority for Cloud Computing

http://jicce.org 239

Table 3. λmax and consistency ratio (CR) for system utilization

 VM1 VM2 VM3 VM4 VM5 Weight

VM1 1 3 1 2 1/3 0.214

VM2 1/3 1 1/2 2 1/2 0.129

VM3 1 2 1 3 1 0.251

VM4 1/2 0.5 1/3 1 1/3 0.086

VM5 3 2 1 3 1 0.320

 λmax = 5.236, CR = 0.042 (<0.1)

Table 4. λmax and consistency ratio (CR) for cost

 VM1 VM2 VM3 VM4 VM5 Weight

VM1 1 2 1/4 4 1/2 0.174

VM2 1/2 1 1/3 2 1/3 0.108

VM3 4 3 1 3 2 0.391

VM4 1/4 0.5 1/3 1 1/3 0.076

VM5 2 3 1/2 3 1 0.250

 λmax = 5.281, CR = 0.050 (<0.1)

Finally, the score of each VM is calculated by multiplying

the weight matrix (ω
vm

) in the alternative level by the weight

vector (ω
criteria

) in the attribute level through Eqs. (4)–(9),

which follows, is the score vector for each VM. Because

VM3 recorded the maximum score (0.375), the proposed

scheduler should select VM3 to execute the job.

score = ω�� × ω�������	

=

��
��
�0.1660.086
0.433
0.059

0.255

		0.214		
0.129
0.251
0.086

0.320

0.174

0.108
0.391
0.076

0.250��
��
�
× 	0.2680.195

0.537

 =
��
��
�0.1800.106
0.375
0.073

0.265��
��
�		
.

		(9)

Next, we calculate the weight vector and CR of each VM

for the response time, system utilization, and cost. Tables 2–

4 show these weight vectors and CRs. As all CRs are less

than 0.1, all preference matrices must be consistent.

V. CONCLUSION

Job scheduling is an important problem in cloud com-

puting, which is naturally composed of heterogeneous

resources. We defined this issue as MCDM. To settle this

issue, this paper introduced a two-step job scheduling

scheme based on priority, with consideration of both the job

characteristics and the MCDM. In the first step, the priority

of a job was classified in 1 of 4 levels, which are determined

by importance attributes. In the second step, we applied the

AHP process in job allocations to the VM to tackle the

MCDM issue. We adopted responsibility, system utilization,

and cost of jobs as decision criteria. We then analyzed the

time complexity of the proposed scheme and confirmed that

the proposed algorithm showed acceptable complexity. In

the future, work will be carried out aiming to minimize the

complexity and to implement a real scheduler in a sample

cloud system.

REFERENCES

[1] R. Baraglia, G. Capannini, P. Dazzi, and G. Pagano, “A multi-

criteria job scheduling framework for large computing farms,”

Journal of Computer and System Sciences, vol. 79, no. 2, pp. 230-

244, 2013.

[2] E. Deelman, “Grids and clouds: making workflow applications

work in heterogeneous distributed environments,” International

Journal of High Performance Computing Applications, vol. 24, no.

3, pp. 284-298, 2010.

[3] J. Yu, R. Buyya, and C. K. Tham, “Cost-based scheduling of

scientific workflow applications on utility grids,” in Proceedings

of the 1st IEEE International Conference on e-Science and Grid

Computing, Melbourne, Australia, pp. 5-8, 2005.

[4] J. Yu and R. Buyya, “A budget constrained scheduling of

workflow applications on utility grids using genetic algorithms,”

in Proceedings of the 15th IEEE International Symposium on High

Performance Distributed Computing, Paris, France, pp. 19-23,

2006.

[5] P. Padala, K. G. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal, A.

Merchant, and K. Salem, “Adaptive control of virtualized

resources in utility computing environments,” in Proceedings of

the 2nd ACM SIGOPS/EuroSys European Conference on Com-

puter Systems, Lisbon, Portugal, pp. 289-302, 2007.

[6] Z. Yu and W. Shi, “A planner-guided scheduling strategy for

multiple workflow applications,” in Proceedings of the 37th

International Conference on Parallel Processing Workshops,

Portland, OR, pp. 1-8, 2008.

[7] M. Xu, L. Cui, H. Wang, and Y. Bi, “A multiple QoS constrained

scheduling strategy of multiple workflows for cloud computing,”

in Proceedings of IEEE International Symposium on Parallel and

Distributed Processing with Applications, Chengdu, China, pp.

629-634, 2009.

[8] J. Kosinska, J. Kosinski, and K. Zielinski, “The concept of

application clustering in cloud computing environments: the need

for extending the capabilities of virtual networks,” in Proceedings

of the 5th International Multi-Conference on Computing in the

Global Information Technology, Valencia, Spain, pp. 139-145,

2010.

[9] S. Ghanbaria and M. Othman, “A priority based job scheduling

algorithm in cloud computing,” in Proceedings of the Inter-

national Conference on Advances Science and Contemporary

Engineering 2012, Jakarta, Indonesia, pp. 778-785, 2012.

[10] T. L. Saaty, Decision Making for Leaders: The Analytical

Hierarchy Process for Decisions in a Complex World. Pittsburgh,

J. lnf. Commun. Converg. Eng. 11(4): 235-240, Dec. 2013

http://dx.doi.org/10.6109/jicce.2013.11.4.235 240

PA: RWS Publications, 2012.

[11] V. Strassen, “Gaussian elimination is not optimal,” Numerische

Mathematik, vol. 13, no. 4, pp. 354-356, 1969.

[12] S. Robinson, “Toward an optimal algorithm for matrix multi-

plication,” SIAM News, vol. 38, no. 9, 2005.

studied computer science at Pusan National University in Pusan, Korea and earned a doctoral degree from
the university in 2000. He is an associate professor in the Computer Engineering Department at Silla
University in South Korea. Prior to joining Silla University, he worked at the Korea Technology Finance
Corporation. His current interests include embedded systems, ubiquitous health care, cloud computing, and
pervasive computing.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /None
 /ColorImageResolution 450
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /None
 /GrayImageResolution 450
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1800
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /KOR <FEFF005BAE30C900003A00200027002D0020CD9CB825C6A900200028C555CD950058002C0020C5ECBC31004F00290027005D0020005BAE30C900003A00200027002D0020CD9CB825C6A900200028C555CD95004F002C0020C5ECBC31005800290027005D0020005BAE30C900003A00200027002D0020CD9CB825C6A900200028C555CD95004F002C0020C5ECBC31004F00290027005D0020005BAE30C900003A00200027CD9CD3100020D488C9C80027005D0020C7740020C124C815C7440020C0ACC6A9D558C5EC0020ACE0D488C9C80020C2DCD5D80020C778C1C4C5D00020AC00C7A50020C801D569D55C002000410064006F0062006500200050004400460020BB38C11CB97C0020C791C131D569B2C8B2E4002E0020C774B807AC8C0020C791C131B41C00200050004400460020BB38C11CB2940020004100630072006F0062006100740020BC0F002000410064006F00620065002000520065006100640065007200200035002E00300020C774C0C1C5D0C11C0020C5F40020C2180020C788C2B5B2C8B2E4002E>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

