• Title/Summary/Keyword: Cloud index

Search Result 178, Processing Time 0.025 seconds

A Secure Index Management Scheme for Providing Data Sharing in Cloud Storage

  • Lee, Sun-Ho;Lee, Im-Yeong
    • Journal of Information Processing Systems
    • /
    • v.9 no.2
    • /
    • pp.287-300
    • /
    • 2013
  • Cloud storage is provided as a service in order to keep pace with the increasing use of digital information. It can be used to store data via networks and various devices and is easy to access. Unlike existing removable storage, many users can use cloud storage because it has no storage capacity limit and does not require a storage medium. Cloud storage reliability has become a topic of importance, as many users employ it for saving great volumes of data. For protection against unethical administrators and attackers, a variety of cryptography systems, such as searchable encryption and proxy re-encryption, are being applied to cloud storage systems. However, the existing searchable encryption technology is inconvenient to use in a cloud storage environment where users upload their data. This is because this data is shared with others, as necessary, and the users with whom the data is shared change frequently. In this paper, we propose a searchable re-encryption scheme in which a user can safely share data with others by generating a searchable encryption index and then re-encrypt it.

A Study on the Application of NOAA/AVHRR Data -Analysis of cloud top and surface temperature,albedo,sea surface temperature, vegetation index, forest fire and flood- (NOAA/AVHRR 자료 응용기법 연구 - 운정.지표온도, 반사도, 해수면 온도, 식생지수, 산불, 홍수 분석 -)

  • 이미선;서애숙;이충기
    • Korean Journal of Remote Sensing
    • /
    • v.12 no.1
    • /
    • pp.60-80
    • /
    • 1996
  • AVHRR(Advanced Very High Resolution Radiometer) on NOAA satellite provides data in five spectral, one in visible range, one in near infrared and three in thermal range. In this paper, application of NOAA/AVHRR data is studied for environment monitoring such as cloud top temperature, surface temperature, albedo, sea surface temperature, vegetation index, forest fire, flood, snow cover and so on. The analyses for cloud top temperature, surface temperature, albedo, sea surface temperature, vegetation index and forest fire showed reasonable agreement. But monitoring for flood and snow cover was uneasy due to the limitations such as cloud contamination, low spatial resolution. So this research had only simple purpose to identify well-defined waterbody for dynamic monitoring of flood. Based on development of these basic algorithms, we have a plan to further reseach for environment monitoring using AVHRR data.

Privacy-Preserving Cloud Data Security: Integrating the Novel Opacus Encryption and Blockchain Key Management

  • S. Poorani;R. Anitha
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.11
    • /
    • pp.3182-3203
    • /
    • 2023
  • With the growing adoption of cloud-based technologies, maintaining the privacy and security of cloud data has become a pressing issue. Privacy-preserving encryption schemes are a promising approach for achieving cloud data security, but they require careful design and implementation to be effective. The integrated approach to cloud data security that we suggest in this work uses CogniGate: the orchestrated permissions protocol, index trees, blockchain key management, and unique Opacus encryption. Opacus encryption is a novel homomorphic encryption scheme that enables computation on encrypted data, making it a powerful tool for cloud data security. CogniGate Protocol enables more flexibility and control over access to cloud data by allowing for fine-grained limitations on access depending on user parameters. Index trees provide an efficient data structure for storing and retrieving encrypted data, while blockchain key management ensures the secure and decentralized storage of encryption keys. Performance evaluation focuses on key aspects, including computation cost for the data owner, computation cost for data sharers, the average time cost of index construction, query consumption for data providers, and time cost in key generation. The results highlight that the integrated approach safeguards cloud data while preserving privacy, maintaining usability, and demonstrating high performance. In addition, we explore the role of differential privacy in our integrated approach, showing how it can be used to further enhance privacy protection without compromising performance. We also discuss the key management challenges associated with our approach and propose a novel blockchain-based key management system that leverages smart contracts and consensus mechanisms to ensure the secure and decentralized storage of encryption keys.

Hilbert-curve based Multi-dimensional Indexing Key Generation Scheme and Query Processing Algorithm for Encrypted Databases (암호화 데이터를 위한 힐버트 커브 기반 다차원 색인 키 생성 및 질의처리 알고리즘)

  • Kim, Taehoon;Jang, Miyoung;Chang, Jae-Woo
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.10
    • /
    • pp.1182-1188
    • /
    • 2014
  • Recently, the research on database outsourcing has been actively done with the popularity of cloud computing. However, because users' data may contain sensitive personal information, such as health, financial and location information, the data encryption methods have attracted much interest. Existing data encryption schemes process a query without decrypting the encrypted databases in order to support user privacy protection. On the other hand, to efficiently handle the large amount of data in cloud computing, it is necessary to study the distributed index structure. However, existing index structure and query processing algorithms have a limitation that they only consider single-column query processing. In this paper, we propose a grid-based multi column indexing scheme and an encrypted query processing algorithm. In order to support multi-column query processing, the multi-dimensional index keys are generated by using a space decomposition method, i.e. grid index. To support encrypted query processing over encrypted data, we adopt the Hilbert curve when generating a index key. Finally, we prove that the proposed scheme is more efficient than existing scheme for processing the exact and range query.

Efficient Top-K Queries Computation for Encrypted Data in the Cloud (클라우드 환경에서의 암호화 데이터에 대한 효율적인 Top-K 질의 수행 기법)

  • Kim, Jong Wook
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.8
    • /
    • pp.915-924
    • /
    • 2015
  • With growing popularity of cloud computing services, users can more easily manage massive amount of data by outsourcing them to the cloud, or more efficiently analyse large amount of data by leveraging IT infrastructure provided by the cloud. This, however, brings the security concerns of sensitive data. To provide data security, it is essential to encrypt sensitive data before uploading it to cloud computing services. Although data encryption helps provide data security, it negatively affects the performance of massive data analytics because it forbids the use of index and mathematical operation on encrypted data. Thus, in this paper, we propose a novel algorithm which enables to efficiently process a large amount of encrypted data. In particular, we propose a novel top-k processing algorithm on the massive amount of encrypted data in the cloud computing environments, and verify the performance of the proposed approach with real data experiments.

Analysis of K-Defense Cloud Computing Service Availability Considering of Cloud Computing Traffic Growth (클라우드 컴퓨팅 트래픽 증가를 고려한 국방 클라우드 컴퓨팅 서비스 가용성 분석)

  • Lee, Sung-Tae;Ryou, Hwang-Bin
    • Convergence Security Journal
    • /
    • v.13 no.4
    • /
    • pp.93-100
    • /
    • 2013
  • In 2012, According to 'Cisco Global Cloud Index 2011-2016', the Cisco company forecasted that global data center traffic will nearly quadruple and cloud traffic will nearly sextuple by 2016. Such a rapid growing of traffic is caused by traffic inside the data center and cloud computing workloads. In 2010, the Ministry of National Defense decided to build a Mega Center including the cloud computing technology by 2014, as part of the '2012 Information Service Plan', which is now underway. One of the factors to consider is cloud computing traffic to build a Mega Center. Since the K-defense cloud computing system is built, K-defense cloud computing traffic will increase steadily. This paper, analyzed the availability of K-defense cloud computing service with the K-defense cloud computing traffic increasing using K-Defense cloud computing test system and CloudAnalyst simulation tool. Created 3 scenarios and Simulated with these scenarios, the results are derived that the availability of K-defense cloud computing test system is fulfilled, even cloud workloads are increased as muh as forecasted cloud traffic growth from now until 2016.

Soil moisture estimation using the water cloud model and Sentinel-1 & -2 satellite image-based vegetation indices (Sentinel-1 & -2 위성영상 기반 식생지수와 Water Cloud Model을 활용한 토양수분 산정)

  • Chung, Jeehun;Lee, Yonggwan;Kim, Jinuk;Jang, Wonjin;Kim, Seongjoon
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.3
    • /
    • pp.211-224
    • /
    • 2023
  • In this study, a soil moisture estimation was performed using the Water Cloud Model (WCM), a backscatter model that considers vegetation based on SAR (Synthetic Aperture Radar). Sentinel-1 SAR and Sentinel-2 MSI (Multi-Spectral Instrument) images of a 40 × 50 km2 area including the Yongdam Dam watershed of the Geum River were collected for this study. As vegetation descriptor of WCM, Sentinel-1 based vegetation index RVI (Radar Vegetation Index), depolarization ratio (DR), and Sentinel-2 based NDVI (Normalized Difference Vegetation Index) were used, respectively. Forward modeling of WCM was performed by 3 groups, which were divided by the characteristics between backscattering coefficient and soil moisture. The clearer the linear relationship between soil moisture and the backscattering coefficient, the higher the simulation performance. To estimate the soil moisture, the simulated backscattering coefficient was inverted. The simulation performance was proportional to the forward modeling result. The WCM simulation error showed an increasing pattern from about -12dB based on the observed backscattering coefficient.

Study on clustering of satellite images by K-means algorithm

  • 설상동;김정선
    • Proceedings of the Korean Institute of Communication Sciences Conference
    • /
    • 1987.04a
    • /
    • pp.9-13
    • /
    • 1987
  • K-emans alsor/thm was used to classify cloud-type that is low, mix and cumuionimbus Tnitiat ciustercenters and K parameter is given in this paper by coatse computins and Fisher’s alsorithm. Results indicate that performance index is minimized and mix cloud is well clallified.

  • PDF

EEIRI: Efficient Encrypted Image Retrieval in IoT-Cloud

  • Abduljabbar, Zaid Ameen;Ibrahim, Ayad;Hussain, Mohammed Abdulridha;Hussien, Zaid Alaa;Al Sibahee, Mustafa A.;Lu, Songfeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.11
    • /
    • pp.5692-5716
    • /
    • 2019
  • One of the best means to safeguard the confidentiality, security, and privacy of an image within the IoT-Cloud is through encryption. However, looking through encrypted data is a difficult process. Several techniques for searching encrypted data have been devised, but certain security solutions may not be used in IoT-Cloud because such solutions are not lightweight. We propose a lightweight scheme that can perform a content-based search of encrypted images, namely EEIRI. In this scheme, the images are represented using local features. We develop and validate a secure scheme for measuring the Euclidean distance between two descriptor sets. To improve the search efficiency, we employ the k-means clustering technique to construct a searchable tree-based index. Our index construction process ensures the privacy of the stored data and search requests. When compared with more familiar techniques of searching images over plaintexts, EEIRI is considered to be more efficient, demonstrating a higher search cost of 7% and a decrease in search accuracy of 1.7%. Numerous empirical investigations are carried out in relation to real image collections so as to evidence our work.

Spatio-temporal soil moisture estimation using water cloud model and Sentinel-1 synthetic aperture radar images (Sentinel-1 SAR 위성영상과 Water Cloud Model을 활용한 시공간 토양수분 산정)

  • Chung, Jeehun;Lee, Yonggwan;Kim, Sehoon;Jang, Wonjin;Kim, Seongjoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.28-28
    • /
    • 2022
  • 본 연구는 용담댐유역을 포함한 금강 유역 상류 지역을 대상으로 Sentinel-1 SAR (Synthetic Aperture Radar) 위성영상을 기반으로 한 토양수분 산정을 목적으로 하였다. Sentinel-1 영상은 2019년에 대해 12일 간격으로 수집하였고, 영상의 전처리는 SNAP (SentiNel Application Platform)을 활용하여 기하 보정, 방사 보정 및 Speckle 보정을 수행하여 VH (Vertical transmit-Horizontal receive) 및 VV (Vertical transmit-Vertical receive) 편파 후방산란계수로 변환하였다. 토양수분 산정에는 Water Cloud Model (WCM)이 활용되었으며, 모형의 식생 서술자(Vegetation descriptor)는 RVI (Radar Vegetation Index)와 NDVI (Normalized Difference Vegetation Index)를 활용하였다. RVI는 Sentinel-1 영상의 VH 및 VV 편파자료를 이용해 산정하였으며, NDVI는 동기간에 대해 10일 간격으로 수집된 Sentinel-2 MSI (MultiSpectral Instrument) 위성영상을 활용하여 산정하였다. WCM의 검정 및 보정은 한국수자원공사에서 제공하는 10 cm 깊이의 TDR (Time Domain Reflectometry) 센서에서 실측된 6개 지점의 토양수분 자료를 수집하여 수행하였으며, 매개변수의 최적화는 비선형 최소제곱(Non-linear least square) 및 PSO (Particle Swarm Optimization) 알고리즘을 활용하였다. WCM을 통해 산정된 토양수분은 피어슨 상관계수(Pearson's correlation coefficient)와 평균제곱근오차(Root mean square error)를 활용하여 검증을 수행할 예정이다.

  • PDF