• 제목/요약/키워드: Cloud Network

검색결과 853건 처리시간 0.028초

A New Approach Towards Aggregation in VANET

  • Hussain, Rasheed;Abbas, Fizza;Son, Junggab;Kim, Sangjin;Oh, Heekuck
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2013년도 추계학술발표대회
    • /
    • pp.214-217
    • /
    • 2013
  • Advancements in automobile industries and the communication technologies caused VANET (Vehicular Ad Hoc NETwork) to evolve to VANET-based clouds before its deployment. It is more likely that VANET clouds will replace the traditional VANET in the deployment phase. It is to be noted that an abrupt deployment is out of question because it would require mass of resources and money to do so; instead incremental deployment is more ideal. In this paper, we aim at the incremental deployment phase of VANET clouds and focus on the well-established public transport networks. Data aggregation is one of the essential aspects in traditional VANET and has been researched for quite long time. However the previously proposed schemes are still controversial. Keeping in mind the time and space prediction of public buses, we leverage these buses as potential aggregators and MG (Mobile Gateways) in VANET clouds. Buses gather cooperative whereabouts information from neighbors, aggregate that information, disseminate it to the neighbor MGs and also send it to the cloud for storage and for services exchange. In our proposed scheme, we believe that the dissemination will be effective and cover most of the urban area since at any instant of time; buses cover most part of the urban areas. Besides, the effective transmission range is higher due to tall buses.

Neural Network and Cloud Computing for Predicting ECG Waves from PPG Readings

  • Kosasih, David Ishak;Lee, Byung-Gook;Lim, Hyotaek
    • Journal of Multimedia Information System
    • /
    • 제9권1호
    • /
    • pp.11-20
    • /
    • 2022
  • In this paper, we have recently created self-driving cars and self-parking systems in human-friendly cars that can provide high safety and high convenience functions by recognizing the internal and external situations of automobiles in real time by incorporating next-generation electronics, information communication, and function control technologies. And with the development of connected cars, the ITS (Intelligent Transportation Systems) market is expected to grow rapidly. Intelligent Transportation System (ITS) is an intelligent transportation system that incorporates technologies such as electronics, information, communication, and control into the transportation system, and aims to implement a next-generation transportation system suitable for the information society. By combining the technologies of connected cars and Internet of Things with software features and operating systems, future cars will serve as a service platform to connect the surrounding infrastructure on their own. This study creates a research methodology based on the Enhanced Security Model in Self-Driving Cars model. As for the types of attacks, Availability Attack, Man in the Middle Attack, Imperial Password Use, and Use Inclusive Access Control attack defense methodology are used. Along with the commercialization of 5G, various service models using advanced technologies such as autonomous vehicles, traffic information sharing systems using IoT, and AI-based mobility services are also appearing, and the growth of smart transportation is accelerating. Therefore, research was conducted to defend against hacking based on vulnerabilities of smart cars based on artificial intelligence blockchain.

Online Monitoring of Ship Block Construction Equipment Based on the Internet of Things and Public Cloud: Take the Intelligent Tire Frame as an Example

  • Cai, Qiuyan;Jing, Xuwen;Chen, Yu;Liu, Jinfeng;Kang, Chao;Li, Bingqiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권11호
    • /
    • pp.3970-3990
    • /
    • 2021
  • In view of the problems of insufficient data collection and processing capability of multi-source heterogeneous equipment, and low visibility of equipment status at the ship block construction site. A data collection method for ship block construction equipment based on wireless sensor network (WSN) technology and a data processing method based on edge computing were proposed. Based on the Browser/Server (B/S) architecture and the OneNET platform, an online monitoring system for ship block construction equipment was designed and developed, which realized the visual online monitoring and management of the ship block construction equipment status. Not only that, the feasibility and reliability of the monitoring system were verified by using the intelligent tire frame system as the application object. The research of this project can lay the foundation for the ship block construction equipment management and the ship block intelligent construction, and ultimately improve the quality and efficiency of ship block construction.

로봇 팔을 활용한 정리작업을 위한 물체 자세추정 및 이미지 매칭 (Pose Estimation and Image Matching for Tidy-up Task using a Robot Arm)

  • 박정란;조현준;송재복
    • 로봇학회논문지
    • /
    • 제16권4호
    • /
    • pp.299-305
    • /
    • 2021
  • In this study, the task of robotic tidy-up is to clean the current environment up exactly like a target image. To perform a tidy-up task using a robot, it is necessary to estimate the pose of various objects and to classify the objects. Pose estimation requires the CAD model of an object, but these models of most objects in daily life are not available. Therefore, this study proposes an algorithm that uses point cloud and PCA to estimate the pose of objects without the help of CAD models in cluttered environments. In addition, objects are usually detected using a deep learning-based object detection. However, this method has a limitation in that only the learned objects can be recognized, and it may take a long time to learn. This study proposes an image matching based on few-shot learning and Siamese network. It was shown from experiments that the proposed method can be effectively applied to the robotic tidy-up system, which showed a success rate of 85% in the tidy-up task.

쿠버네티스에서 ML 워크로드를 위한 분산 인-메모리 캐싱 방법 (Distributed In-Memory Caching Method for ML Workload in Kubernetes)

  • 윤동현;송석일
    • Journal of Platform Technology
    • /
    • 제11권4호
    • /
    • pp.71-79
    • /
    • 2023
  • 이 논문에서는 기계학습 워크로드의 특징을 분석하고 이를 기반으로 기계학습 워크로드의 성능 향상을 위한 분산 인-메모리 캐싱 기법을 제안한다. 기계학습 워크로드의 핵심은 모델 학습이며 모델 학습은 컴퓨팅 집약적 (Computation Intensive)인 작업이다. 쿠버네티스 기반 클라우드 환경에서 컴퓨팅 프레임워크와 스토리지를 분리한 구조에서 기계학습 워크로드를 수행하는 것은 자원을 효과적으로 할당할 수 있지만, 네트워크 통신을 통해 IO가 수행되야 하므로 지연이 발생할 수 있다. 이 논문에서는 이런 환경에서 수행되는 머신러닝 워크로드의 성능을 향상하기 위한 분산 인-메모리 캐싱 기법을 제안한다. 특히, 제안하는 방법은 쿠버네티스 기반의 머신러닝 파이프라인 관리 도구인 쿠브플로우를 고려하여 머신러닝 워크로드에 필요한 데이터를 분산 인-메모리 캐시에 미리 로드하는 새로운 방법을 제안한다.

  • PDF

Enhancing Service Availability in Multi-Access Edge Computing with Deep Q-Learning

  • 루숭구 조쉬 음와싱가;샤이드 무하마드 라자;리덕 타이;김문성;추현승
    • 인터넷정보학회논문지
    • /
    • 제24권2호
    • /
    • pp.1-10
    • /
    • 2023
  • The Multi-access Edge Computing (MEC) paradigm equips network edge telecommunication infrastructure with cloud computing resources. It seeks to transform the edge into an IT services platform for hosting resource-intensive and delay-stringent services for mobile users, thereby significantly enhancing perceived service quality of experience. However, erratic user mobility impedes seamless service continuity as well as satisfying delay-stringent service requirements, especially as users roam farther away from the serving MEC resource, which deteriorates quality of experience. This work proposes a deep reinforcement learning based service mobility management approach for ensuring seamless migration of service instances along user mobility. The proposed approach focuses on the problem of selecting the optimal MEC resource to host services for high mobility users, thereby reducing service migration rejection rate and enhancing service availability. Efficacy of the proposed approach is confirmed through simulation experiments, where results show that on average, the proposed scheme reduces service delay by 8%, task computing time by 36%, and migration rejection rate by more than 90%, when comparing to a baseline scheme.

메타버스 기술과 보안 위협 및 대응방안 (Metaverse Technology and Security Threats and Countermeasures)

  • 우성희;이효정
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 추계학술대회
    • /
    • pp.328-330
    • /
    • 2022
  • 현재 다양한 분야에서 메타버스를 도입하고, 콘텐츠 또는 아이템 등의 거래에 NFT를 사용하는 가상융합경제가 등장하여 '메타버스 환경'으로 발전할 것으로 전망하고 있다. '메타버스 환경'은 앞으로 우리사회의 변화를 주도할 것이며 AI, 빅데이터, 클라우드, IoT, 블록체인, 차세대 네트워크 기술과 융합될 것이다. 하지만 메타버스 이용자가 서비스 이용을 위해 제공하는 개인정보, 기기정보, 행위정보는 주요 공격대상 된다. 따라서 사용자의 안전한 이용 환경 제공과 관련 기업의 비즈니스 기반 확대를 위하여 민·관 협력체계 구축 및 보안 가이드 개발이 선두과제이다. 따라서 본 연구에서는 메타버스 특징과 기술을 비교분석하며 이에 발생할 수 있는 보안 위협과 대응방안을 살펴본다.

  • PDF

데이터센터 자원 연결 방안 연구 (A Study on Connections of Resources in Data Centers)

  • 기장근;권기영
    • 한국소프트웨어감정평가학회 논문지
    • /
    • 제15권2호
    • /
    • pp.67-72
    • /
    • 2019
  • 최근 인터넷 보급과 함께 폭발적으로 증가하고 있는 클라우드 서비스 등의 데이터 트래픽 급증으로 데이터 센터의 구성 자원들을 효율적으로 연결할 수 있는 초고속 광모듈 네트워크의 필요성이 급증하고 있다. 본 논문에서는 광스위치 연결구조에서 스위칭 셀 동작을 제어하기 위한 알고리즘들을 제안하고, 이에 따른 성능을 시뮬레이션을 통해 비교 분석하였다. 성능 분석결과 본 논문에서 제안하는 알고리즘이 기존 알고리즘에 비해 1:2 이상의 다중연결설정 성공확률이 약 3~7% 정도 향상됨을 보였다.

FedGCD: Federated Learning Algorithm with GNN based Community Detection for Heterogeneous Data

  • Wooseok Shin;Jitae Shin
    • 인터넷정보학회논문지
    • /
    • 제24권6호
    • /
    • pp.1-11
    • /
    • 2023
  • Federated learning (FL) is a ground breaking machine learning paradigm that allow smultiple participants to collaboratively train models in a cloud environment, all while maintaining the privacy of their raw data. This approach is in valuable in applications involving sensitive or geographically distributed data. However, one of the challenges in FL is dealing with heterogeneous and non-independent and identically distributed (non-IID) data across participants, which can result in suboptimal model performance compared to traditionalmachine learning methods. To tackle this, we introduce FedGCD, a novel FL algorithm that employs Graph Neural Network (GNN)-based community detection to enhance model convergence in federated settings. In our experiments, FedGCD consistently outperformed existing FL algorithms in various scenarios: for instance, in a non-IID environment, it achieved an accuracy of 0.9113, a precision of 0.8798,and an F1-Score of 0.8972. In a semi-IID setting, it demonstrated the highest accuracy at 0.9315 and an impressive F1-Score of 0.9312. We also introduce a new metric, nonIIDness, to quantitatively measure the degree of data heterogeneity. Our results indicate that FedGCD not only addresses the challenges of data heterogeneity and non-IIDness but also sets new benchmarks for FL algorithms. The community detection approach adopted in FedGCD has broader implications, suggesting that it could be adapted for other distributed machine learning scenarios, thereby improving model performance and convergence across a range of applications.

4차 산업혁명 기술에 기반한 농업 기상 정보 시스템의 요구도 분석 (Requirement Analysis for Agricultural Meteorology Information Service Systems based on the Fourth Industrial Revolution Technologies)

  • 김광수;유병현;현신우;강대균
    • 한국농림기상학회지
    • /
    • 제21권3호
    • /
    • pp.175-186
    • /
    • 2019
  • 기상 및 기후 정보를 활용하여 기후변화에 대응하기 위한 기후 스마트 농업을 도입하기 위한 노력이 진행되어 왔다. 기후 스마트 농업을 실현하기 위해 농가별 기상자료 수집 및 관리가 요구된다. 4차 산업혁명 시대의 주요한 기술인 IoT, 인공지능, 및 클라우드 컴퓨팅 기술들이 농가 단위의 기상정보 생산에 적극적으로 활용될 수 있다. 저비용과 저전력 특성을 가진 IoT 센서들로 무선 센서 네트워크를 구축할 경우, 농가나 농촌 공동체 수준에서 농업 생태계의 생산성을 파악할 수 있는 기상관측자료의 수집 및 분석이 가능하다. 무선 센서 네트워크를 통해 자료가 수집될 수 있는 공간적인 범위를 특정 농가보다는 농촌 공동체 수준으로 확대하여 IoT 기술의 수혜 농가를 확대하고, 아울러 상세기상정보의 생산 및 검증에 활용가능한 농업기상 빅데이터 구축이 필요하다. 기존에 개발되어 보급되고 있는 전자기후도를 활용하여, 농가 단위의 기상 추정 자료가 제공되고 있다. 이들 자료의 신뢰성을 향상시키고, 기존의 서비스 체계에서 제공되지 않고 있는 기상 변수들을 지원하기 위해 심층신경망과 같은 인공지능 기술들이 도입되어야 할 것이다. 시스템 구축의 비용 절감 및 활용성 증대를 위해 클라우드 및 포그 컴퓨팅 기술을 도입하여 농업 기상 정보 서비스 시스템이 설계되어야 한다. 또한, 기상자료와 농산물 가격 정보와 같은 환경자료와 경영정보를 동시에 제공할 수 있는 정보 시스템을 구축하여 활용도가 높은 농업 기상 서비스 시스템이 구축되어야 할 것이다. 이와 함께, 농업인 뿐만 아니라 소비자까지도 고려된 모바일 어플리케이션의 설계 및 개발을 통해, 4차 산업혁명의 주요 기술들이 농업 분야에서 확산될 수 있도록 지속적인 노력이 필요하다. 이러한 정보 시스템은 농업 분야 이해당사자에게 수요자 맞춤형 농림기상정보를 제공하여 기후스마트 농업 관련 기술의 개발과 도입을 촉진시킬 수 있을 것이다.