• Title/Summary/Keyword: Cloud Discharges

Search Result 9, Processing Time 0.024 seconds

Measurement and Statistical Analysis of Magnetic Fields Produced by Cloud Discharges (운방전에 의해 발생되는 자장의 계측과 통계적 분석)

  • Lee Bok-Hee;Gil Hyoung-.Jun;Cho Sung-Chul;Shim Eung-Bo;Woo Jung-Wook
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.6
    • /
    • pp.262-268
    • /
    • 2005
  • In this work, to obtain the detailed information about lightning electromagnetic field waveforms, the LabVIEW based-measurement system of time-changing magnetic fields was designed and constructed. The frequency bandwidth of the magnetic field measuring system ranges from 300 [Hz] to 1 [MHz], and the response sensitivity is 2.78 [mV/nT]. Data acquisition system with the resolution of 12 bits and memory capacity of 32 [Mbyte] was triggered by the magnetic field to be measured. The properties and parameters of the magnetic fields produced by cloud discharges were statistically investigated. The magnetic field waveforms radiated from cloud lighting discharges tend to be bipolar, with two or more narrow and several pulses superimposed on the initial front part. The recording length of the magnetic field measurement system is about 10 [ms]. The mean duration of cloud discharges is 1.3 [ms], and the number of outburst pulses for the period is 8 in average. The front times of the magnetic fields are 6.15 [$\mu$s] in average. The the zero-to-zero crossing times that is the initial half-cycle duration is widely dispersed and the mean value is 9.61 [$\mu$s], and the mean value of percentage depth of dip to opposite polarity is 41.1 [$\%$].

Characteristics of the stepped leaders in cloud-to-ground lightning discharges (낙뢰에 있어서 계단상 리더의 특성)

  • Lee, B.H.;Jeang, K.H.;Lee, T.M.;Sung, J.W.;Ahn, C.H.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1996-1998
    • /
    • 2000
  • In this paper, the electric and magnetic field waveforms produced by cloud-to-groud lightning discharges were measured and statistically analyzed. The measuring system used to measure the electric and magnetic fields is consisted of the hemisphere electric field sensor, the loop magnetic field sensor and the data acquisition system. The stepped leader is appeared before the return stroke. Some parameters of the electric and magnetic fields produced by the stooped leaders in cloud-to-ground lightning discharges were investigated.

  • PDF

Parameters of the Electric and Magnetic Fields Due to Cloud-to-Ground Lightnings (낙뢰에 의한 전계와 자계 파형의 파라미터)

  • 이복희;안창환
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.3
    • /
    • pp.359-368
    • /
    • 1998
  • One of the topics concerning the electromagnetic compatibility of modern electronic circuits is to take protection from transient overvoltages caused by not only cloud-to-ground lightnings but also induced lightning discharges. In this paper, the vertical electric and horizontal magnetic fields from cloud-to-ground lightnings were measured and analyzed. The electric and magnetic fields waveforms associated with cloud-to-ground lightnings have several subsidiary peaks which decrease with time. There were not much differences between the electric and magnetic field due to long distance cloud-to-ground discharges. Average values of 10~90% rise times of electric fields are $4.65mutextrm{s}$ for the positive cloud-to-ground lightning and $3.29mutextrm{s}$ for the negative cloud-to-ground lightning, respectively. Also, in the positive and negative cloud-to-ground lightning discharges, the zero-to-zero crossing times in the wave tail of magnetic fields are significantly longer than those of the electric fields.

  • PDF

Parameters of the Magnetic Field Waveform Radiated from Cloud Lightning Discharges (운방전에 의해서 방사된 자장 파형의 파라미터)

  • 이복희;안창환;장석훈
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.6
    • /
    • pp.917-926
    • /
    • 1999
  • In this paper, the recording device for measuring the magnetic field waveforms associated with the cloud lightning discharges was made by the loop-type magnetic field sensor, and the measuring system of a distance between lightning stroke point and observatory site was proposed. The parameters including the time interval of superimposed pulses, zero-to-zero crossing time and the percentage depth of the dip for the positive and the negative magnetic field waveforms were statistically analyzed as a function of the distance between the lightning discharge point and the observatory site. The results could be summarized as follows; Several superimposed pulses were observed at the initial front part of the magnetic field waveform produced by cloud lightning discharges, and the mean time interval between superimposed pulses was about $4\mu\textrm{s}$. Also, the bipolar characteristic appeared significantly and the percentage depth of the dip was about 57~65%. It was known that the zero-to-zero crossing time of the electromagnetic fields is gradually decreased as a distance between lightning discharge point and observatory site is increased.

  • PDF

Characteristics of the Electromagnetic Pulses Radiated from Intracloud Lightning Discharges (운방전에 의해 발생한 전자장 펄스의 특성)

  • Lee, Bok-Hee;Lee, Dong-Moon;Lee, Seung-Chil;Jeong, Dong-Cheol
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.581-585
    • /
    • 2004
  • The wave shapes of electromagnetic pulses radiated from lightning discharges are significantly changeable one of the topics concerning on EMI/EMC of modern electronic systems is the efficient and economic protection of electronic circuits against transient voltages caused by not only by cloud-to-ground lightning but also by intracloud lightning discharges. In this work, in order to obtain the detailed information about lightning electromagenetic pulses, the electromagnetic pulses radiated from intracloud lightning discharge processes were measured and analyzed statistically.

  • PDF

A Methodology of Finding the Direction of Lightning Discharge using Loop-type Magnetic Field Sensors (루프형 자계센서를 이용하여 뇌방전이 발생한 방향을 탐지하는 기법)

  • Lee, Bok-Hee;Cho, Chi-Youn;Cho, Sung-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.10
    • /
    • pp.63-68
    • /
    • 2014
  • This paper deals with a methodology that applies the time-varying magnetic fields produced by the cloud discharges to find the direction of thunderstorm movement. We investigated the basic performance of the magnetic field measurement system composed of multi-turn loop-type sensors, the differential amplifier and active integrator. As a result, the response characteristics of the magnetic field sensor system to sinusoidal signals was excellent. The frequency bandwidth ranges from about 1 kHz to 500 kHz, the response sensitivity was 0.16mV/nT. In addition, we proposed the algorithm that determines the direction of lightning discharges using the comparison of the output signals of right-angled loop-type magnetic field sensors. The accuracy of the direction finding of lightning discharges is fairly well within the measurement error of less than $5^{\circ}$. The magnetic field measurement system proposed in this work can be used to track the direction of thunderstorm movement.

Statistical Characteristics of Recent Lightning Occurred over South Korea (최근 남한지역에서 발생한 낙뢰의 통계적 특성)

  • Eom, Hyo-Sik;Suh, Myoung-Seok
    • Journal of the Korean earth science society
    • /
    • v.30 no.2
    • /
    • pp.210-222
    • /
    • 2009
  • Lightning data, observed from total lightning detection system (TLDS) of KMA, for the recent five years (2002-2006) have been analyzed for temporal and spatial characteristics of frequency, intensity, duration, and flash rate. Lightning frequency varies largely with years (most frequent in 2006) and the lightning during the summer accounts for 75% of total flashes and only 0.6% of lightnings strike in cold season. In rainy season (JJAS), the ratio of positive flashes to negative ones is as low as 0.15, but it increases up to 0.98 in February. The seasonal variation of lightning duration is strongly linked with lightning occurrences, whereas flashes rates show weak seasonal variability. In a daily scale, lightning, on average, occurs more often at dawn (2 am, 5-7 am) and in the mid-afternoon (15 pm), and the lightning at dawn (around 5 am) is most intense during the day. The western inland areas md the West/South Sea show high lightning density during JJAS, whereas eastern part and the East Sea exhibit a low density of lightning. Considering the low ratio of positive flashes (0.15) for the whole analysis domain during summer period, Chungnam and Jeonbuk areas have a high ratio of flashes over 0.4. However, these should be analyzed with much caution because weak positive cloud-to-cloud discharges can be regarded as cloud-to-ground flashes. The western inland also exhibits long annual flash hours (15-24). And the W3st Sea has high flash rates as a result of large density and low flash hours. The most frequent time of lightning occurrence over most inland areas lies between mid-afternoon and early-evening, whereas mountainous and coastal areas, and the northern Kyoungki and Hwanghae provinces show the maximum lightning strikes in the morning and at dawn, respectively.

A Basic Study on the Attachment Process of Lightning Leader to Ground (낙뢰 리더의 대지부착과정에 대한 기초적 연구)

  • Yoo, Yang-Woo;Kim, Seung-Min;Kim, You-Ha;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.10
    • /
    • pp.82-88
    • /
    • 2014
  • This paper presents the results of model tests for the attachment process of lightning leader to ground which is one of poorly understood processes of cloud-to-ground lightning discharges. In order to simulate the attachment process of lightning leader to ground, we investigated the discharge characteristics of air gap between the tip of needle-shaped electrode and the soil surface as a parameter of moisture content in soils when the positive and negative $1.2/50{\mu}s$ lightning impulse voltages are applied. The breakdown voltage and the discharge light were observed. As a result, the attachment processes of lightning leader to ground are strongly dependent on the grain size and the moisture content of soils. The time to breakdown was shortened with increasing the magnitude of incident impulse voltages. The delay time from application of the highest voltage to breakdown in sand is shortened with increasing the moisture content. The delay time from application of the voltage to breakdown in gravel varied from about $0.5{\mu}s$ to several ${\mu}s$. As the moisture content in soil increases, the breakdown voltages are decreased and the breakdown voltage versus time to breakdown curves are shifted toward the lower side. The results obtained in this work are similar to those for non-uniform air gap stressed by lightning impulse voltages.

Estimation of the Reach-average Velocity of Mountain Streams Using Dye Tracing (염료추적자법을 이용한 산지하천의 구간 평균 유속 추정)

  • Tae-Hyun Kim;Jeman Lee;Chulwon Lee;Sangjun Im
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.3
    • /
    • pp.374-381
    • /
    • 2023
  • The travel time of flash floods along mountain streams is mainly governed by reach-average velocity, rather than by the point velocity of the locations of interest. Reach-average velocity is influenced by various factors such as stream geometry, streambed materials, and the hydraulic roughness of streams. In this study, the reach-average velocity in mountain streams was measured for storm periods using rhodamine dye tracing. The point cloud data obtained from a LiDAR survey was used to extract the average hydraulic roughness height, such as Ra, Rmax, and Rz. The size distribution of the streambed materials (D50, D84) was also considered in the estimation of the roughness height. The field experiments revealed that the reach-average velocities had a significant relationship with flow discharges (v = 0.5499Q0.6165 ), with an R2 value of 0.77. The root mean square error in the roughness height of the Ra-based estimation (0.45) was lower than those of the other estimations (0.47-1.04). Among the parameters for roughness height estimation, the Ra -based roughness height was the most reliable and suitable for developing the reach-average velocity equation for estimating the travel time of flood waves in mountain streams.