• Title/Summary/Keyword: Cloud Construction

Search Result 276, Processing Time 0.024 seconds

Development of a 3D earthwork model based on reverse engineering

  • Kim, Sung-Keun
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.641-642
    • /
    • 2015
  • Unlike for other building processes, BIM for earthwork does not need a large variety of 3D model shapes; however, it requires a 3D model that can efficiently reflect the changing features of the ground shape and provide soil type-dependent workload calculation and information on equipment for optimal management. Objects for earthwork have not yet been defined because the current BIM system does not provide them. The BIM technology commonly applied in the manufacturing center uses real-object data obtained through 3D scanning to generate 3D parametric solid models. 3D scanning, which is used when there are no existing 3D models, has the advantage of being able to rapidly generate parametric solid models. In this study, A method to generate 3D models for earthwork operations using reverse engineering is suggested. 3D scanning is used to create a point cloud of a construction site and the point cloud data are used to generate a surface model, which was then converted into a parametric model with 3D objects for earthwork

  • PDF

Construction of a Virtual Mobile Edge Computing Testbed Environment Using the EdgeCloudSim (EdgeCloudSim을 이용한 가상 이동 엣지 컴퓨팅 테스트베드 환경 개발)

  • Lim, Huhnkuk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.8
    • /
    • pp.1102-1108
    • /
    • 2020
  • Mobile edge computing is a technology that can prepare for a new era of cloud computing and compensate for shortcomings by processing data near the edge of the network where data is generated rather than centralized data processing. It is possible to realize a low-latency/high-speed computing service by locating computing power to the edge and analyzing data, rather than in a data center far from computing and processing data. In this article, we develop a virtual mobile edge computing testbed environment where the cloud and edge nodes divide computing tasks from mobile terminals using the EdgeCloudSim simulator. Performance of offloading techniques for distribution of computing tasks from mobile terminals between the central cloud and mobile edge computing nodes is evaluated and analyzed under the virtual mobile edge computing environment. By providing a virtual mobile edge computing environment and offloading capabilities, we intend to provide prior knowledge to industry engineers for building mobile edge computing nodes that collaborate with the cloud.

A Study on The Construction of Cloud BIM-based Medical Facility Design Support System (클라우드 BIM 기반 의료시설 설계지원 시스템 구축에 관한 연구)

  • Jung, Sung-Ho;Lee, Byung-Soo;Choi, Yoon-Ki
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.35 no.6
    • /
    • pp.39-46
    • /
    • 2019
  • In the 21st century, medical facility projects are required to operate appropriate digital technologies as the development of technology and the interests of various participants become more complex. In order for architects to successfully lead negotiations among various stakeholder groups, it is necessary to plan for effective communication through appropriate design reflecting their opinions and coordination of conflicts. For this purpose, building information modeling (BIM), which is a method of designing based on knowledge information related to medical facilities in the building database, can respond to change of order promptly and minimizes the occurrence of design errors can do. Recently, BIM technology and cloud computing technology in ICT have been combined and research on cloud BIM has been actively carried out. The use of cloud computing technology in BIM-based healthcare facility projects can effectively support decision making among project participants and has the advantage of sharing and collaborating on various forms of information generated during the design process, regardless of location and time. Therefore, the purpose of this study is to build of system that can support the design of medical facility using cloud computing technology in BIM.

Three-dimensional Map Construction of Indoor Environment Based on RGB-D SLAM Scheme

  • Huang, He;Weng, FuZhou;Hu, Bo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.2
    • /
    • pp.45-53
    • /
    • 2019
  • RGB-D SLAM (Simultaneous Localization and Mapping) refers to the technology of using deep camera as a visual sensor for SLAM. In view of the disadvantages of high cost and indefinite scale in the construction of maps for laser sensors and traditional single and binocular cameras, a method for creating three-dimensional map of indoor environment with deep environment data combined with RGB-D SLAM scheme is studied. The method uses a mobile robot system equipped with a consumer-grade RGB-D sensor (Kinect) to acquire depth data, and then creates indoor three-dimensional point cloud maps in real time through key technologies such as positioning point generation, closed-loop detection, and map construction. The actual field experiment results show that the average error of the point cloud map created by the algorithm is 0.0045m, which ensures the stability of the construction using deep data and can accurately create real-time three-dimensional maps of indoor unknown environment.

The Analysis and Comparison on the Sky Condition between Cloud Amount and Measured Solar Horizontal Irradiation in Seoul (서울의 기상청 전 운량과 측정 일사량에 의한 천공 데이터 비교 분석)

  • Hong, Seong-Kwan;Park, Byoung-Chul;Choi, An-Seop;Lee, Jeong-Ho
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.69-74
    • /
    • 2008
  • This study is to analyze and compare on the sky condition of cloud amount and measured solar horizontal irradiation in Seoul. Sky cover method is determination of sky condition used by cloud amount of the Meteorological Administration. And HCI method is determination of sky condition used by measured solar horizontal irradiation. The HCI methods of Erbs et al.(1982), Orgill and Hollands(1977) appear a lot of error because of the air pollution such as smog phenomenon or yellow sand phenomenon and so on. Therefore, The purpose of this study is to improve the method for determination of sky condition.

  • PDF

A Study on the Development of the Safety Management System on Construction Sites in the Cloud Computing Environments (클라우드 컴퓨팅 환경에서의 건설현장 안전관리시스템 개발 방안 연구)

  • Jeong, Seong Yun;Kim, Byung Kon;Choi, Won Sik;Na, Hei Suk
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2012.05a
    • /
    • pp.417-418
    • /
    • 2012
  • 최근 국내외적으로 관심이 높은 클라우드 컴퓨팅기반으로 안전사고 예방 대응과 관제 모니터링시스템과 안전관리업무를 지원하는 시스템을 개발하기 위한 방안을 제시하였다.

  • PDF

SmartX Provisioning Framework for Automated Installation/Configuration of Multi-site based Cloud Infrastructure (멀티사이트 기반 클라우드 환경의 구성 자동화를 위한 SmartX 프로비저닝 프레임워크)

  • Shin, Jun-Sik;Kim, JongWon
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.11
    • /
    • pp.547-558
    • /
    • 2016
  • Construction of multi-site Cloud Infrastructure with OpenStack, the most popular cloud open source project with various ICT infrastructure technologies, has operational inefficiency due to installation complexity and geographical limitation. To address this inefficiency, we gradually developed automated installation/configuration tools to automate installation/configuration of Linux and OpenStack by complying with DevOps methodology over a multi-site OpenStack testbed called OF@KOREN SmartX Playground. However, the pre-developed installation tools can be used only for limited cases. Therefore, we designed and developed a prototype of SmartX Provisioning Framework which could conducts Playground-wide provisioning flexibly by following three steps of resource management in Software-defined Infrastructure. We verified the efficiency of the provisioning functionality of the framework by demonstrating an example of automated multi-site cloud construction.

Privacy-Preserving Cloud Data Security: Integrating the Novel Opacus Encryption and Blockchain Key Management

  • S. Poorani;R. Anitha
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.11
    • /
    • pp.3182-3203
    • /
    • 2023
  • With the growing adoption of cloud-based technologies, maintaining the privacy and security of cloud data has become a pressing issue. Privacy-preserving encryption schemes are a promising approach for achieving cloud data security, but they require careful design and implementation to be effective. The integrated approach to cloud data security that we suggest in this work uses CogniGate: the orchestrated permissions protocol, index trees, blockchain key management, and unique Opacus encryption. Opacus encryption is a novel homomorphic encryption scheme that enables computation on encrypted data, making it a powerful tool for cloud data security. CogniGate Protocol enables more flexibility and control over access to cloud data by allowing for fine-grained limitations on access depending on user parameters. Index trees provide an efficient data structure for storing and retrieving encrypted data, while blockchain key management ensures the secure and decentralized storage of encryption keys. Performance evaluation focuses on key aspects, including computation cost for the data owner, computation cost for data sharers, the average time cost of index construction, query consumption for data providers, and time cost in key generation. The results highlight that the integrated approach safeguards cloud data while preserving privacy, maintaining usability, and demonstrating high performance. In addition, we explore the role of differential privacy in our integrated approach, showing how it can be used to further enhance privacy protection without compromising performance. We also discuss the key management challenges associated with our approach and propose a novel blockchain-based key management system that leverages smart contracts and consensus mechanisms to ensure the secure and decentralized storage of encryption keys.

A TBM tunnel collapse risk prediction model based on AHP and normal cloud model

  • Wang, Peng;Xue, Yiguo;Su, Maoxin;Qiu, Daohong;Li, Guangkun
    • Geomechanics and Engineering
    • /
    • v.30 no.5
    • /
    • pp.413-422
    • /
    • 2022
  • TBM is widely used in the construction of various underground projects in the current world, and has the unique advantages that cannot be compared with traditional excavation methods. However, due to the high cost of TBM, the damage is even greater when geological disasters such as collapse occur during excavation. At present, there is still a shortage of research on various types of risk prediction of TBM tunnel, and accurate and reliable risk prediction model is an important theoretical basis for timely risk avoidance during construction. In this paper, a prediction model is proposed to evaluate the risk level of tunnel collapse by establishing a reasonable risk index system, using analytic hierarchy process to determine the index weight, and using the normal cloud model theory. At the same time, the traditional analytic hierarchy process is improved and optimized to ensure the objectivity of the weight values of the indicators in the prediction process, and the qualitative indicators are quantified so that they can directly participate in the process of risk prediction calculation. Through the practical engineering application, the feasibility and accuracy of the method are verified, and further optimization can be analyzed and discussed.

A study on the 2D floor plan derivation of the indoor Point Cloud based on pixelation (포인트 클라우드 데이터의 픽셀화 기반 건축물 실내의 2D도면 도출에 관한 연구)

  • Jung, Yong-Il;Oh, Sang-Min;Ryu, Min-Woo;Kang, Nam-Woo;Cho, Hun-hee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.105-106
    • /
    • 2020
  • Recently, a method of deriving an efficient 2D floor plan has been attracting attention for remodeling of old buildings with inaccurate 2D floor plans, and thus, studies on reverse engineering of indoor Point Cloud Date(PCD) have been actively conducted. However, in the case of a indoor PCD, due to interference of indoor objects, available equipment is limited to Mobile Laser Scanner(MLS), which causes a efficiency reduction of data processing. Therefore, this study proposes an automatic derivation algorithm for 2D floor plan of indoor PCD based on pixelation. First, the scanned indoor PCD is projected on the XY coordinate plane. Second, a point distribution of each pixel in the projected PCD is derived using a pixelation. Lastly, 2 floor plan derivation based on the algorithm is performed.

  • PDF