• Title/Summary/Keyword: Cloud Amount

Search Result 390, Processing Time 0.024 seconds

Heuristic based Energy-aware Resource Allocation by Dynamic Consolidation of Virtual Machines in Cloud Data Center

  • Sabbir Hasan, Md.;Huh, Eui-Nam
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.8
    • /
    • pp.1825-1842
    • /
    • 2013
  • Rapid growth of the IT industry has led to significant energy consumption in the last decade. Data centers swallow an enormous amount of electrical energy and have high operating costs and carbon dioxide excretions. In response to this, the dynamic consolidation of virtual machines (VMs) allows for efficient resource management and reduces power consumption through the live migration of VMs in the hosts. Moreover, each client typically has a service level agreement (SLA), this leads to stipulations in dealing with energy-performance trade-offs, as aggressive consolidation may lead to performance degradation beyond the negotiation. In this paper we propose a heuristic based resource allocation of VM selection and a VM allocation approach that aims to minimize the total energy consumption and operating costs while meeting the client-level SLA. Our experiment results demonstrate significant enhancements in cloud providers' profit and energy savings while improving the SLA at a certain level.

Generating a Rectangular Net from Unorganized Point Cloud Data Using an Implicit Surface Scheme (음 함수 곡면기법을 이용한 임의의 점 군 데이터로부터의 사각망 생성)

  • Yoo, D.J.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.12 no.4
    • /
    • pp.274-282
    • /
    • 2007
  • In this paper, a method of constructing a rectangular net from unorganized point cloud data is presented. In the method an implicit surface that fits the given point data is generated by using principal component analysis(PCA) and adaptive domain decomposition method(ADDM). Then a complete and quality rectangular net can be obtained by extracting voxel data from the implicit surface and projecting exterior faces of extracted voxels onto the implicit surface. The main advantage of the proposed method is that a quality rectangular net can be extracted from randomly scattered 3D points only without any further information. Furthermore the results of this works can be used to obtain many useful information including a slicing data, a solid STL model and a NURBS surface model in many areas involved in treatment of large amount of point data by proper processing of implicit surface and rectangular net generated previously.

Big Data Security and Privacy: A Taxonomy with Some HPC and Blockchain Perspectives

  • Alsulbi, Khalil;Khemakhem, Maher;Basuhail, Abdullah;Eassa, Fathy;Jambi, Kamal Mansur;Almarhabi, Khalid
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.7
    • /
    • pp.43-55
    • /
    • 2021
  • The amount of Big Data generated from multiple sources is continuously increasing. Traditional storage methods lack the capacity for such massive amounts of data. Consequently, most organizations have shifted to the use of cloud storage as an alternative option to store Big Data. Despite the significant developments in cloud storage, it still faces many challenges, such as privacy and security concerns. This paper discusses Big Data, its challenges, and different classifications of security and privacy challenges. Furthermore, it proposes a new classification of Big Data security and privacy challenges and offers some perspectives to provide solutions to these challenges.

ViVa: Mobile Video Quality Enhancement System Based on Cloud Offloading (ViVa: 클라우드 오프로딩 기반의 모바일 영상 품질 향상)

  • Jo, Bokyun;Suh, Doug Young
    • Journal of Broadcast Engineering
    • /
    • v.24 no.2
    • /
    • pp.292-298
    • /
    • 2019
  • In this paper, we show how to provide high quality image service using cloud server and image quality enhancement algorithm. In other words, based on the concept of ViVa (Video Value Addition) proposed in the paper, we propose an improved system compared to the existing streaming service by providing a high-quality video with the transmission bit rate and calculation amount necessary to serve low-quality images.

Security Determinants of the Educational Use of Mobile Cloud Computing in Higher Education

  • Waleed Alghaith
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.9
    • /
    • pp.50-62
    • /
    • 2024
  • The decision to integrate mobile cloud computing (MCC) in higher education without first defining suitable usage scenarios is a global issue as the usage of such services becomes extensive. Consequently, this study investigates the security determinants of the educational use of mobile cloud computing among universities' students. This study proposes and develops a theoretical model by adopting and modifying the Protection Motivation Theory (PMT). The study's findings show that a significant amount of variance in MCC adoption was explained by the proposed model. MCC adoption intention was shown to be highly influenced by threat appraisal and coping appraisal factors. Perceived severity alone explains 37.8% of students "Intention" to adopt MCC applications, which indicates the student's perception of the degree of harm that would happen can hinder them from using MCC. It encompasses concerns about data security, privacy breaches, and academic integrity issues. Response cost, perceived vulnerability and response efficacy also have significant influence on students "intention" by 18.8%, 17.7%, and 6.7%, respectively.

Security Determinants of the Educational Use of Mobile Cloud Computing in Higher Education

  • Waleed Alghaith
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.8
    • /
    • pp.105-118
    • /
    • 2024
  • The decision to integrate mobile cloud computing (MCC) in higher education without first defining suitable usage scenarios is a global issue as the usage of such services becomes extensive. Consequently, this study investigates the security determinants of the educational use of mobile cloud computing among universities students. This study proposes and develops a theoretical model by adopting and modifying the Protection Motivation Theory (PMT). The studys findings show that a significant amount of variance in MCC adoption was explained by the proposed model. MCC adoption intention was shown to be highly influenced by threat appraisal and coping appraisal factors. Perceived severity alone explains 37.8% of students "Intention" to adopt MCC applications, which indicates the student's perception of the degree of harm that would happen can hinder them from using MCC. It encompasses concerns about data security, privacy breaches, and academic integrity issues. Response cost, perceived vulnerability and response efficacy also have significant influence on students "intention" by 18.8%, 17.7%, and 6.7%, respectively.

The Distribution of Snowfall by Siberian High in the Honam Region - Emphasized on the Westward Region of the Noryung mountain ranges - (시베리아 고기압 확장시 호남 지방의 강설 분포 - 노령 산맥 서사면 지역을 중심으로 -)

  • 이승호;천재호
    • Journal of the Korean Geographical Society
    • /
    • v.38 no.2
    • /
    • pp.173-183
    • /
    • 2003
  • This study aims to understand the patterns of spatial distribution of snowfall by Siberian High in the Honam region in Korea. In the Honam region, Siberian High induces snowfall dominantly. There is a huge amount of snowfall in the westward of the Noryung mountain ranges to the Wert coast in the Honam region affected by northwesterly wind directly from the Siberian High. The westward of the Noryung mountain ranges such as a heavy snowfall region has a various pattern of distribution of snowfall due to topography. The coast region has a large amount of snowfall by sea effect. And, snowfall amount is decreased from the coast to the inland plain. However, in front of mountain, snowfall is increase by reason of a forced ascending air to the mountain. In general the region where frequently appear a cumuliform cloud has a large amount of snowfall. A cumuliform cloud is frequent in the mountainous region in inland, the coast, and the inland plain in order Snowfall is intense in the coast and the mountainous region, and weak in the inland plain. In the mountainous region, a cumuliform cloud induced tv a forced ascending air by reason of topography generates snowfall mostly. This fact is the main difference with snowfall in the mountainous region and the coast region. In the result, in the Honam region, snowfall distribution and snowfall pattern are various, according to geographical climate factor such as sea and topography. The heavy snowfall region in the Honam region is divided into the coast region affected by sea effect and the mountainous region affected by topography effect.

Comparative Experiment of 2D and 3D DCT Point Cloud Compression (2D 및 3D DCT를 활용한 포인트 클라우드 압축 비교 실험)

  • Nam, Kwijung;Kim, Junsik;Han, Muhyen;Kim, Kyuheon;Hwang, Minkyu
    • Journal of Broadcast Engineering
    • /
    • v.26 no.5
    • /
    • pp.553-565
    • /
    • 2021
  • Point cloud is a set of points for representing a 3D object, and consists of geometric information, which is 3D coordinate information, and attribute information, which is information representing color, reflectance, and the like. In this way of expressing, it has a vast amount of data compared to 2D images. Therefore, a process of compressing the point cloud data in order to transmit the point cloud data or use it in various fields is required. Unlike color information corresponding to all 2D geometric information constituting a 2D image, a point cloud represents a point cloud including attribute information such as color in only a part of the 3D space. Therefore, separate processing of geometric information is also required. Based on these characteristics of point clouds, MPEG under ISO/IEC standardizes V-PCC, which imitates point cloud images and compresses them into 2D DCT-based 2D image compression codecs, as a compression method for high-density point cloud data. This has limitations in accurately representing 3D spatial information to proceed with compression by converting 3D point clouds to 2D, and difficulty in processing non-existent points when utilizing 3D DCT. Therefore, in this paper, we present 3D Discrete Cosine Transform-based Point Cloud Compression (3DCT PCC), a method to compress point cloud data, which is a 3D image by utilizing 3D DCT, and confirm the efficiency of 3D DCT compared to V-PCC based on 2D DCT.

Active VM Consolidation for Cloud Data Centers under Energy Saving Approach

  • Saxena, Shailesh;Khan, Mohammad Zubair;Singh, Ravendra;Noorwali, Abdulfattah
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.11
    • /
    • pp.345-353
    • /
    • 2021
  • Cloud computing represent a new era of computing that's forms through the combination of service-oriented architecture (SOA), Internet and grid computing with virtualization technology. Virtualization is a concept through which every cloud is enable to provide on-demand services to the users. Most IT service provider adopt cloud based services for their users to meet the high demand of computation, as it is most flexible, reliable and scalable technology. Energy based performance tradeoff become the main challenge in cloud computing, as its acceptance and popularity increases day by day. Cloud data centers required a huge amount of power supply to the virtualization of servers for maintain on- demand high computing. High power demand increase the energy cost of service providers as well as it also harm the environment through the emission of CO2. An optimization of cloud computing based on energy-performance tradeoff is required to obtain the balance between energy saving and QoS (quality of services) policies of cloud. A study about power usage of resources in cloud data centers based on workload assign to them, says that an idle server consume near about 50% of its peak utilization power [1]. Therefore, more number of underutilized servers in any cloud data center is responsible to reduce the energy performance tradeoff. To handle this issue, a lots of research proposed as energy efficient algorithms for minimize the consumption of energy and also maintain the SLA (service level agreement) at a satisfactory level. VM (virtual machine) consolidation is one such technique that ensured about the balance of energy based SLA. In the scope of this paper, we explore reinforcement with fuzzy logic (RFL) for VM consolidation to achieve energy based SLA. In this proposed RFL based active VM consolidation, the primary objective is to manage physical server (PS) nodes in order to avoid over-utilized and under-utilized, and to optimize the placement of VMs. A dynamic threshold (based on RFL) is proposed for over-utilized PS detection. For over-utilized PS, a VM selection policy based on fuzzy logic is proposed, which selects VM for migration to maintain the balance of SLA. Additionally, it incorporate VM placement policy through categorization of non-overutilized servers as- balanced, under-utilized and critical. CloudSim toolkit is used to simulate the proposed work on real-world work load traces of CoMon Project define by PlanetLab. Simulation results shows that the proposed policies is most energy efficient compared to others in terms of reduction in both electricity usage and SLA violation.

FaST: Fine-grained and Scalable TCP for Cloud Data Center Networks

  • Hwang, Jaehyun;Yoo, Joon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.3
    • /
    • pp.762-777
    • /
    • 2014
  • With the increasing usage of cloud applications such as MapReduce and social networking, the amount of data traffic in data center networks continues to grow. Moreover, these appli-cations follow the incast traffic pattern, where a large burst of traffic sent by a number of senders, accumulates simultaneously at the shallow-buffered data center switches. This causes severe packet losses. The currently deployed TCP is custom-tailored for the wide-area Internet. This causes cloud applications to suffer long completion times towing to the packet losses, and hence, results in a poor quality of service. An Explicit Congestion Notification (ECN)-based approach is an attractive solution that conservatively adjusts to the network congestion in advance. This legacy approach, however, lacks scalability in terms of the number of flows. In this paper, we reveal the primary cause of the scalability issue through analysis, and propose a new congestion-control algorithm called FaST. FaST employs a novel, virtual congestion window to conduct fine-grained congestion control that results in improved scalability. Fur-thermore, FaST is easy to deploy since it requires only a few software modifications at the server-side. Through ns-3 simulations, we show that FaST improves the scalability of data center networks compared with the existing approaches.