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Abstract 
 

With the increasing usage of cloud applications such as MapReduce and social networking, 

the amount of data traffic in data center networks continues to grow. Moreover, these appli-

cations follow the incast traffic pattern, where a large burst of traffic sent by a number of 

senders, accumulates simultaneously at the shallow-buffered data center switches. This causes 

severe packet losses. The currently deployed TCP is custom-tailored for the wide-area Internet. 

This causes cloud applications to suffer long completion times towing to the packet losses, and 

hence, results in a poor quality of service. An Explicit Congestion Notification (ECN)-based 

approach is an attractive solution that conservatively adjusts to the network congestion in 

advance. This legacy approach, however, lacks scalability in terms of the number of flows. In 

this paper, we reveal the primary cause of the scalability issue through analysis, and propose a 

new congestion-control algorithm called FaST. FaST employs a novel, virtual congestion 

window to conduct fine-grained congestion control that results in improved scalability. Fur-

thermore, FaST is easy to deploy since it requires only a few software modifications at the 

server-side. Through ns-3 simulations, we show that FaST improves the scalability of data 

center networks compared with the existing approaches. 
 

 

Keywords: Scalable congestion control, cloud data center networks, virtual congestion 

window 
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1. Introduction 

Cloud data center applications such as MapReduce [1], social networking [2], and recom-

mendation systems [3] demand a severe latency requirement because application latency af-

fects user quality-of-service, and hence, operator revenue. These applications generally em-

ploy the Partition/Aggregate design pattern. Applications divide and distribute the jobs to 

multiple servers, and then, one receiver (called the aggregator) simultaneously aggregates the 

response data from the multiple servers (called the workers). However, the currently deployed 

legacy TCP shows poor performance for cloud data center applications because of the fol-

lowing reasons. 

First, the Partition/Aggregate traffic pattern causes incast congestion, where the main bot-

tleneck point is at the Top-of-the-Rack (ToR) switches. Today's data center ToR switches 

generally use a small buffer memory to reduce cost. This results in frequent buffer overflows, 

and hence, packet losses. Second, scalability is a critical issue since recent reports on data 

center networks show that the average number of flows in a ToR switch exceeds a few tens and 

these are consistently growing [7][17]. Third, TCP senders frequently experience timeouts 

since they rely on retransmission timeouts (RTO) to detect packet losses. However, the RTO is 

not a good indication because the minimum RTO (RTOmin) is normally in the order of milli-

seconds (that is, 200-300 ms) while the Round Trip Times (RTTs) are in the order of micro-

seconds (that is, less than 250 s). Consequently, there will be a relatively long idle time 

during the congestion-detection phase, resulting in poor performance. Finally, in the Parti-

tion/Aggregate traffic pattern, each receiver is required to wait for responses from all the 

servers to form a meaningful result. Therefore, the overall performance is determined by the 

congested connection even though most of the connections do not experience any packet loss 

[7][8][9][10]. 

Transport protocols have been developed to address these problems [4][5][6][7][8][9][10], 

and we categorize them into three classes: ECN-based, RTT-based, and switch-based ap-

proaches. The Explicit Congestion Notification (ECN)-based approach [7][10] utilizes the 

ECN [13] functionality in an end-to-end manner to throttle the flows in proportion to the 

congestion, thus reducing queuing delay and packet drops. However, these approaches are not 

scalable in terms of the number of concurrent TCP connections; they can manage only a few 

tens of connections while the number of concurrent flows in actual data centers can exceed 40 

(the maximum number used in [7]). The RTT-based approach exploits the RTT as an indica-

tion of the queuing delay, i.e., the network congestion. Unlike the Internet, the RTT in data 

center networks is very unreliable. The typical RTTs in data center networks are in the mi-

crosecond granularity meaning that small spikes in the RTT measurements could lead to 

miscalculations by the algorithm [7][8]. Moreover, it is not easy to obtain a stable average or 

minimum RTT, as the flow sizes for Partition/Aggregate applications are generally too small. 

The switch-based approach [11][12] employs functions on the switch to reduce the TCP delay, 

but generally suffers from deployment issues, such as high cost, long turn-around time, and 

backward compatibility [10].  

In this paper, we propose FaST, a novel, fine-grained congestion-control algorithm whose 

main objective is to provide scalability to the data center network. We introduce four key 

contributions that address the aforementioned challenges. First, we reveal the scalability limits 

of the legacy approaches through analysis and observe that the congestion control should be 

fine-grained. FaST manipulates the segment size to render the fine-grained congestion control. 
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Other features of the legacy TCP such as slow start, congestion avoidance, and fast recovery 

are retained for backward compatibility. Second, FaST employs a novel, virtual congestion 

window (vwnd) to conduct the congestion-control algorithm. Third, we implement FaST on 

the ns-3 simulator and show that FaST outperforms the legacy algorithms. Furthermore, FaST 

can manage 50 concurrent flows without packet losses and up to 100 flows with at most one 

TCP timeout per flow. Finally, FaST is easy to deploy since it requires only a few modifica-

tions at the server-side. 

The remainder of this paper is organized as follows. In Section 2, we review today’s cloud 

data center communication patterns and previous work related to data center protocols. Then, 

we analyze the limitations of the previous approaches and discuss the motivation of our work 

in Section 3. In Section 4, we describe our congestion-control algorithm, FaST, that addresses 

the scalability issue. Section 5 presents the experimental evaluation of FaST and compares our 

results with NewReno and DCTCP. Finally, we conclude this paper in Section 6. 

2. Background 

In this section, we briefly review the Partition/Aggregate applications that run on cloud data 

center networks and some existing data center protocols for the incast congestion. 

2.1. Cloud Applications and Partition/Aggregate Design Pattern 

Many cloud applications including MapReduce [1], social networking [2], and recommenda-

tion systems [3] require high performance computing or large storage resources provided by 

multiple servers in a data center. To efficiently process the client’s request and meet their 

demands, the applications usually follow the Partition/Aggregate design pattern shown in Fig. 

1. In this design pattern, there are two types of servers: aggregators and workers. The workers 

provide computing power and data according to the user’s requests. The aggregators gather the 

response data from the numerous workers. In other words, the request is partitioned and dis-

tributed to the workers and the results are aggregated by the aggregator(s) in each layer. 

 

(deadline = 250ms)

(deadline = 100ms)

(deadline = 40ms)

...

Aggregator

AggregatorAggregator Aggregator

Worker Worker Worker Worker Worker Worker...

 
 

Fig. 1. Typical Partition/Aggregate design pattern in cloud applications 
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If these applications are extended to online cloud services, there are stringent delay re-

quirements for the service to complete; there could be a Service Level Agreement (SLA) 

between the service providers and users. In this case, the results must be delivered within the 

SLA, typically 200-300 ms in a data center [7]. To meet this deadline, the workers may have 

deadlines of only a few tens of milliseconds as shown in Fig. 1. Note that if the query com-

pletion time is longer than the deadline, the results could be discarded. This not only affects the 

quality of service for the users but also results in a significant decrease in the operator revenue 

[7][11]. Therefore, it is very important to reduce the query completion time in today's data 

center communications. 

2.2. Data Center Protocols for Incast Congestion 

As described in Section 1, TCP incast congestion is one of the main causes of poor perfor-

mance (for example, long query completion time). It generally causes multiple packet losses 

and TCP timeouts, forcing the client to be idle for RTO. To mitigate this incast congestion, the 

early solutions were (i) reducing client’s receive socket buffer size below 64 KB, (ii) reducing 

the duplicate-ACK threshold, and (iii) disabling slow-start to avoid retransmission timeout [4]. 

However, these approaches do not fundamentally address the incast congestion. V. Vasudevan 

et al. [5] proposed a safe and effective fine-grained retransmission timeout value by reducing 

the minimum RTO from millisecond to microsecond-granularity. This approach is effective 

for long-term flows achieving high goodput, but it is demonstrated that retransmission 

timeouts less than 10 ms can cause spurious retransmission (that is, false alarms of loss de-

tection) [12]. 

Even though the solutions described above improve TCP throughput, they have only fo-

cused on cluster-based storage systems as an application. By monitoring production traffic 

from a 6000-server, data center cluster, M. Alizadeh et al. [7] found that there are several types 

of applications in data centers and small query traffic generated by soft, real-time applications 

can experience long queuing delay because of large background flows. To maintain low buffer 

occupancy at the ToR switches, they proposed DCTCP that provides ECN-based congestion 

window control. However, DCTCP still suffered from incast congestion when the number of 

workers was more than 35 in their experimental environment [7]. Another congestion 

avoidance approach for data center networks is Incast-congestion Control for TCP (ICTCP) 

[8]. In [8], the authors suggested that RTT is not a good congestion indicator in 

high-bandwidth and low-latency networks such as data center environments. For this reason, 

ICTCP measures the bandwidth of the total incoming traffic and controls the receive window 

of each connection such that the total traffic is less than the link capacity. The incast conges-

tion, however, can occur if the number of workers is extremely large even when the window 

size of each server is one. Similarly, IA-TCP [9] controls the workers’ sending rate such that it 

does not exceed the bandwidth-delay product at the receiver side. It is more scalable in terms 

of the number of concurrent flows. However, it does not solve the network congestion that 

occurs at the Aggregation/Core level switches since it assumes that the bottleneck is only at 

the edge ToR switches. 

While the previous studies described above are host-based approaches, switch-based so-

lutions are also proposed. D3 [11] performs explicit rate control in a centralized manner at the 

data center switches, to allocate bandwidth based on each flow’s deadline and size. DeTail 

[12] is an in-network multipath-aware congestion-control mechanism and takes a traffic en-

gineering-based approach to reduce the flow-completion time tail. However, these 

switch-based solutions require high-cost and/or customized hardware chips in the network. 

This is a definite hurdle for deployment. 
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3. Analysis and Motivation 

We consider a typical Partition/Aggregate application-data center network topology where an 

aggregator communicates with several workers as shown in Fig. 2. In the Partition/Aggregate 

application, each worker simultaneously sends a specific size response data to the aggregator. 

The congestion, therefore, usually occurs at the ToR switch buffer adjacent to the Aggregator. 

Consequently, the DCTCP performs its congestion control at the worker side. In this section, 

we briefly describe the main algorithm of DCTCP and analyze the DCTCP performance in 

terms of scalability. 
 

 
 

Fig. 2. Operation of DCTCP on a typical data center network topology 

 

The key notations are summarized in Table 1. 
 

Table 1. Key notations 

Notation Definition 

α Extent of network congestion (0 ≤ α ≤ 1) 

B Switch buffer size 

K Switch buffer threshold to mark with CE bits 

W* Window size of at which the queue size reaches K 

Wmin Minimum window size 

N* Number of flows of at which all the flows' window sizes reaches Wmin 

N*
max Number of flows of at which the queue size reaches B 

 

3.1. Congestion Avoidance of DCTCP 

DCTCP conducts conservative congestion control by adapting to the extent of the congestion 

using the ECN feedbacks. More specifically, DCTCP counts the number of ECN-marked 

packets and reduces the congestion window (cwnd) in proportion to the fraction of the 

ECN-marked packets. The legacy TCP simply halves the cwnd in response to the ECN 

feedback. The ECN-enabled switch marks an arriving packet with the Congestion Encoun-

tered (CE) bit if the current queue occupancy exceeds the threshold K as shown in Fig. 2. This 
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CE-bit feedback is echoed to the sender (that is, the worker) through the corresponding ACK 

packet. Next, for each RTT, the sender calculates the fraction of packets that were marked in 

the last window, F, as follows: 
 

     

     

Number of marked ACKs
F

Total number of ACKs
                                              (1) 

 

The extent of the congestion, α, is obtained as follows: 
 

(1 )g g F                                                         (2) 

 

where g is a weight (0 < g < 1). With this information, the cwnd is updated as follows: 
 

  max 1 / 2 ,2cwnd cwnd                                             (3) 

 

Thus, if all the packets are marked, leading α to be close to 1 (high congestion), DCTCP will 

reduce the cwnd by almost half, the same as TCP. On the other hand, when α is close to 0 (low 

congestion), the cwnd will be only slightly reduced. 

3.2. Scalability of DCTCP 

We first look at the critical window size of DCTCP flows, W*. This is the window size at 

which the queue size reaches K as defined in [7]. Assuming that there are N DCTCP flows 

whose window sizes are synchronized with the identical RTT, the critical window size is 

expressed as: 
 

* C RTT K
W

N MSS

 



                                                        (4) 

 

where C is the capacity of the bottleneck link shared by the N flows, and MSS is the Maximum 

Segment Size. Once the flows' window size reaches W*, it will be reduced within a few RTTs 

as the switch begins to mark the data packets. This implies that W* indicates the maximum 

window size before causing ECN-marking. It is eventually converged to the minimum cwnd 

as N increases to a large number. Now, we define N* to be the number of flows that reduces all 

the flows' window sizes to the minimum cwnd (Wmin). From (4), it follows that: 
 

*

min

C RTT K
N

W MSS

 



                                                         (5) 

 

If N ≥ N*, the window size of each sender should be as large as Wmin, and no window 

modification can be further applied. We found that N
*
 is not a high value in practice. For 

example, let us suppose that the link capacity is 1 Gbps and RTT is 100 s. The typical value 

of K is 20 (packets) while Wmin is 2 according to (3). In this case, N* would be about 14 if the 

MSS is 1.5 KB.  

Next, we consider a case where the total number of outstanding packets is just before the 

buffer overflows. It follows that: 
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1

N

ii
W MSS C RTT B


                                                   (6) 

 

where Wi is the cwnd of the ith connection and B is the buffer size at the switch. We define 

N*
max to be the maximum number of flows that satisfies (6) when N ≥ N*. Then, we have:  

 

  
*

max

min

C RTT B
N

W MSS

 



                                                       (7) 

 

If we apply the above example to (7), the value of N*
max is about 37.5 when B is 100 KB. 

This number corresponds directly to the result conducted in [7] that shows that the incast 

congestion occurs when the number of servers is larger than 35. In other words, N*
max indicates 

the scalability of DCTCP in terms of the number of concurrent TCP flows. 

Equation (7) suggests that there are options to increase N*
max by controlling the parameters. 

Among the available parameters, however, the MSS may be the only controllable parameter 

since C, B, and RTT are uncontrollable; C and B depend on the switch hardware capacity and 

the RTT depends primarily on the network topology. Furthermore, there is not much room to 

control Wmin as its typical value is either 1 or 2 in most settings. Therefore, we attempt to 

control the parameter MSS and we realize this using fine-grained congestion control through a 

virtual congestion window.  

4. FaST: Fine-grained and Scalable TCP 

In this section, we explain our proposed algorithm, called FaST, that is scalable for cloud 

applications that utilize a large number of workers. Our algorithm achieves scalability through 

fine-grained congestion control. FaST utilizes ECN and calculates α at the server side as we 

did in Eq. (2). This is similar to DCTCP. The main difference is that we adjust the current 

segment size to increase N*
max. For this reason, we employ a virtual congestion window (vwnd) 

that can be less than Wmin in the window update procedure (3). The vwnd replaces the legacy 

TCP congestion window. Whenever ECN-marked packets are observed, the vwnd is updated 

as follows: 
 

 1 / 2vwnd vwnd                                                   (8) 

 

Unlike DCTCP, vwnd can scale below Wmin to adjust the segment size (SegmentSize):  
 

,              1

,  1

MSS vwnd
SegmentSize

MSS vwnd vwnd


 

 
                                   (9) 

 

The segment size is reduced below 1 MSS if the vwnd is smaller than 1, otherwise it is 

maintained at the MSS. Note that reducing the segment size may degrade TCP performance as 

it increases the total number of RTTs to complete the flow, resulting in slower flow comple-

tion time. We cap the minimum segment size to 100 Kbytes because the default TCP and IP 

headers are 40 Kbytes in size. 

The basic thought is that it is efficient to use the default MSS when N is small enough (that 

is, N < N*), but we should reduce the segment size in proportion to the extent of the congestion 
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when N ≥ N*. Since DCTCP estimates neither N nor N*, the vwnd is used instead, as it will 

eventually be less than Wmin when N ≥ N*. 

 

Algorithm 1. FaST sender-side algorithm. 

 1: For the first m data packets – Probing Stage: 

 2: vwnd  0.5 

 3: SegmentSize  Default * vwnd 

 4:  

 5: Initialization after m data packets: 

 6: vwnd  Wmin 

 7: SegmentSize  Default MSS 

 8:  

 9: On observing ECN-marked ACKs: 

10: update vwnd         // Equation (8) 

11: update SegmentSize  // Equation (9) 

12:  

13: On sending data packets: 

14: if vwnd < Wmin then 

15:    limit = max(vwnd, 1) * SegmentSize 

16:    Allow to send data as much as limit (bytes) in each round 

17: endif 

 

Algorithm 1 presents our FaST algorithm conducted at the sender. The FaST session be-

gins the Probing Stage that carefully starts with small segments (lines 1-3) for the first m (≤ 3) 

data packets because there is no history about the current network condition. For example, the 

current link can be saturated by a large number of flows, or a Partition/Aggregate type ap-

plication may have tens or even hundreds of workers simultaneously sending packets. This 

probing stage can manage a large number of concurrent flows generated in a short time. Then, 

we initialize the vwnd and segment size to their default value (lines 5-7). Whenever the sender 

observes the ECN-marked ACKs, it updates the vwnd and segment size (lines 9-11) according 

to (8) and (9). Lines 13-17 implement our scalable flow control. If the vwnd is less than Wmin 

(this implies N ≥ N*), we adjust the amount of sending data with the reduced segment size to 

effectively mitigate network congestion. Otherwise, our scheme generally works similar to 

ECN-enabled TCP, for example, DCTCP; the basic schemes such as additive increase, fast 

retransmit, and congestion avoidance operate similarly. 

Finally, we realized that most TCP implementations could have a problem avoiding the 

Silly Window Syndrome (SWS) [16] with such a small data packet size. To address this sit-

uation, we must turn off the SWS function. In principle, the SWS function is used for general 

applications to avoid very small sending windows. However, we turn this function off only for 

the case when the Partition/Aggregate cloud applications are used. Turning the SWS function 

off can easily be achieved at the sender-side by disabling the Nagle algorithm through the 

TCP_NODELAY option. Therefore, other applications such as background transfers will not 

be affected by this action, not causing any problems in practice. 
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5. Evaluation 

For the evaluation, we implemented the FaST algorithm in an ns-3 simulator [15]. In this 

section, we first describe our simulation setup and evaluate the performance in terms of the 

query completion time, number of packet losses, throughput, and fairness. 
 

 
 

Fig. 3. Simulation network topology 

 

5.1. Simulation Setup 

Fig. 3 depicts our simulation network topology that consists of one aggregation switch, five 

Top-of-Rack (ToR) switches, and 20 servers per rack, for a total of 100 servers. The link rate is 

1 Gbps for the ToR switches and 10 Gbps for the aggregation switch. The packet buffer size 

per port is set to 100 Kbytes for the ToR switches assuming that they are shallow-buffered 

commodity switches [7]. We deploy a large buffer for the aggregation switch. The link delay is 

set to 25 s, and hence, the longest round-trip propagation delay is about 200 s, a commonly 

acceptable value in today's data center networks [7]. 

We compare performance between FaST and two existing schemes, NewReno and DCTCP. 

For the key parameters of DCTCP and FaST, we set g, the weighted averaging factor, to 1/16. 

We set K, the buffer occupancy threshold for marking CE bits, to 20 packets for the 1 Gbps 

links and 65 packets for the 10 Gbps according to [7]. The RTOmin for all the TCP senders is 

set to 10 ms. 

To emulate typical cloud applications, we developed a Partition/Aggregate application that 

consists of one root and n workers. The root sends a query to its workers and each worker 

responds with the requested amount of data. After all the response data are received from the 

workers, the query completion time is measured. The measurements are repeated 100 times in 

all simulations. 

5.2. Performance with no Background Traffic 

In this subsection, we increase the number of workers, n, from 10 to 100. We set the response 

data size of each worker to 10 KB as the size of the Partition/Aggregate flows is only a few 

KBs in general cloud data center networks [7][17]. 

We first measure the average query completion time as shown in Fig. 4. When the number 

of workers is small (that is, 10 to 30), the response data is transmitted to the root quickly 
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without any packet losses resulting in low query completion times for all the protocols. 

However, as the number of workers increases, NewReno and DCTCP experience multiple 

packet losses and their query completion time increases to approximately 72 ms and 43 ms, 

respectively. On the other hand, FaST shows a very low completion time until the number of 

workers reaches 50 and takes only 16 ms even with 100 workers. 
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Fig. 4. Average query completion time 

 

Fig. 5 shows the average number of total TCP timeouts. As observed in Fig. 4, there are no 

timeouts when the number of workers is 10 to 30. Overall, the average number of total TCP 

timeouts linearly increases in proportion to the number of workers, but FaST performs much 

better than NewReno and DCTCP, causing a smaller number of TCP timeouts. Therefore, we 

confirm that FaST effectively mitigates the network congestion at the bottleneck port by ad-

justing the segment size. 
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Fig. 5. Average number of total TCP timeouts 
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To investigate the effect of multiple TCP timeouts on the query completion time, we depict 

the cumulative distribution function CDF of the number of TCP timeouts of each worker when 

the number of workers is 100 as shown in Fig. 6. In this figure, it is observed that more than 

50% of NewReno and DCTCP flows experience multiple TCP timeouts, and in the case of 

NewReno, a few workers suffer three consecutive timeouts, resulting in the long query com-

pletion time shown in Fig. 4. Finally, we observe that most FaST flows experience at most one 

TCP timeout. 
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Fig. 6. CDF of the number of TCP timeouts in each worker (n = 100) 

5.3. Performance with Background Traffic 

Next, we add one background flow to the previous scenario. It is reported that the median 

number of large flows in data center networks [7] is one. The size of the background flow is 10 

MB and it is directed to the same receiver (that is, the root node). This flow fully utilizes the 

bottleneck link before the Partition/Aggregate application begins. 
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Fig. 7. Average query completion time with background traffic (10 MB) 
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Fig. 7 shows the average query completion time for the Partition/Aggregate application. 

The overall query completion times of all the protocols increase because of the effect of the 

background flow. The completion time of NewReno, in particular, increases up to 281 ms 

when the number of workers is 100. We observe that a number of NewReno flows perform 

several exponential backoffs as their retransmitted packets are continuously lost. This is 

mainly because the background flow fully utilizes the bottleneck port. On the other hand, the 

background flows that employ DCTCP or FaST try to keep the buffer occupancy low to pro-

vide room for short query flows. We also see that FaST achieves relatively lower completion 

times than DCTCP (under 35 ms). 

Fig. 8 shows the average number of total TCP timeouts. As expected from Fig. 7, the 

number of total TCP timeouts increases slightly for NewReno and DCTCP compared to Fig. 5. 

FaST begins to experience TCP timeouts when the number of workers is 30, but the overall 

number of TCP timeouts is almost the same as Fig. 5. 
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Fig. 8. Average number of total TCP timeouts with background traffic 

 

Fig. 9 shows the average throughput of the background flow. When the number of workers 

is below 50, NewReno shows a high average throughput while the results of DCTCP and FaST 

are similar and less than that of NewReno. This occurs because the background (long-term, 

large) flow with NewReno easily overrides the small flows for cloud applications as explained 

above; hence, it can fully utilize the bottleneck link and achieve high throughput. FaST shows 

lower throughput than NewReno when the number of workers is less than 50, but it is still 

comparable to DCTCP. As the network congestion becomes severe (with more than 50 

workers), we observe that the throughput of the background flow for FaST is comparable with 

that of NewReno. 
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Fig. 9. Average throughput (Mbps) of the background flow 

 

5.4. Convergence and Fairness 

To confirm that FaST flows quickly converge to their fair-share, similar to DCTCP, we set up 

five workers under the same rack. Each worker transmits a large amount of data (1 GB) to the 

same receiver and starts sequentially with a 3-second interval. Fig. 10 shows the throughput 

variation for the five FaST flows, and we confirm that their throughputs are quickly converged 

to the fair-share with this graph. 
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Fig. 10. Convergence test with five FaST flows 

 

We also measure long-term throughputs for 45 workers under the same rack as shown in Fig. 

11 to observe the fairness among FaST flows. 
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Fig. 11. Throughput fairness among 45 FaST flows 

 

Next, we calculate Jain’s fairness index [18] as follows: 
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where Ti is throughput of the ith worker and n is the total number of workers. The fairness 

index of Fig. 11 is 0.999, indicating that FaST flows achieve good fairness. We note that TCP 

friendliness (that is, inter-fairness to NewReno) is not considered in this paper because in most 

data centers, backward compatibility and fairness to legacy protocols are not major concerns 

as they are under a single administrative control [7]. 

5.5. Query Completion Time vs. Segment Size 

The proposed algorithm dynamically adjusts the current segment size that might be smaller 

than MSS. However, the smaller segment size generally results in low transmission perfor-

mance of TCP. Therefore, it is important to show how TCP performance is affected by dif-

ferent segment sizes under the Partition/Aggregate traffic pattern. 

Fig. 12 shows the average query completion time of DCTCP, by increasing the segment size 

from 100 to 1500 bytes. It is observed that the higher segment size results in better perfor-

mance (i.e., low query completion time) when the number of concurrent flows (N) is 25. 

However, as N increases to more than 40, DCTCP suffers from network congestion, which 

results in higher query completion time with larger segment sizes. In this case, the smaller 

segment size shows lower query completion times by avoiding congestion. For example, when 

N = 40, the query completion time is about 12.5 ms with 1500-byte segments. However, re-

ducing the segment size to 1000 bytes could avoid network congestion, showing the lowest 

completion time. Therefore, the proper segment size should be adjusted according to the ex-

tent of the network congestion. 
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Fig. 12. Query completion time vs. Segment size 

6. Conclusion 

In this paper, we propose a scalable congestion-control scheme for cloud data center applica-

tions. Our analysis indicates that the packet buffer at the ToR switches can be full even with a 

few tens of concurrent flows. To mitigate this scalability problem, we employ a fine-grained 

congestion control, called FaST, using a virtual congestion window. By doing this, we achieve 

low query completion times for the short flows generated by cloud applications, while still 

showing comparable average throughput for background traffic. In addition, this approach is 

simple to implement and the actual deployment is easy, as it requires only a small modification 

at the server-side. Through ns-3 simulations, we confirm that the proposed scheme manages 

well with 50 concurrent flows without packet losses and 100 flows with at most one TCP 

timeout per flow. It achieves these results while outperforming other legacy data center con-

gestion-control protocols. 

As future work, we plan to construct a data center testbed with ECN-supported switches 

and perform real experiments to verify the performance of the proposed algorithm. 
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