• Title/Summary/Keyword: Cloud

Search Result 5,568, Processing Time 1.081 seconds

An Analysis of the Support Policy for Small Businesses in the Post-Covid-19 Era Using the LDA Topic Model (LDA 토픽 모델을 활용한 포스트 Covid-19 시대의 소상공인 지원정책 분석)

  • Kyung-Do Suh;Jung-il Choi;Pan-Am Choi;Jaerim Jung
    • Journal of Industrial Convergence
    • /
    • v.22 no.6
    • /
    • pp.51-59
    • /
    • 2024
  • The purpose of the paper is to suggest government policies that are practically helpful to small business owners in pandemic situations such as COVID-19. To this end, keyword frequency analysis and word cloud analysis of text mining analysis were performed by crawling news articles centered on the keywords "COVID-19 Support for Small Businesses", "The Impact of Small Businesses by Response System to COVID-19 Infectious Diseases", and "COVID-19 Small Business Economic Policy", and major issues were identified through LDA topic modeling analysis. As a result of conducting LDA topic modeling, the support policy for small business owners formed a topic label with government cash and financial support, and the impact of small business owners according to the COVID-19 infectious disease response system formed a topic label with a government-led quarantine system and an individual-led quarantine system, and the COVID-19 economic policy formed a topic label with a policy for small business owners to acquire economic crisis and self-sustainability. Focusing on the organized topic label, it was intended to provide basic data for small business owners to understand the damage reduction policy for small business owners and the policy for enhancing market competitiveness in the future pandemic situation.

Exploring Collaborative Learning Dynamics in Science Classes Using Google Docs: An Epistemic Network Analysis of Student Discourse (공유 문서를 활용한 과학 수업에서 나타난 학생 담화의 특징 -인식 네트워크 분석(ENA)의 활용-)

  • Eunhye Shin
    • Journal of The Korean Association For Science Education
    • /
    • v.44 no.1
    • /
    • pp.77-86
    • /
    • 2024
  • This study analyzed students' discourse and learning to investigate the impact of using Google Docs in science classes. The researcher, who is also a science teacher, conducted classes for 49 second-year middle school students. The classes included one using Google Docs and another using traditional paper worksheets covering identical content. Students' discourse collected from each class was compared and analyzed using Epistemic Network Analysis (ENA). The findings indicated that in the class using Google Docs, the proportion of discourse related to task was higher compared to the traditional class. More specifically, discourse regarding taking and uploading photos was prominent. However, such discourse did not lead to peer learning as intended by the teacher. An analysis based on achievement levels revealed that the class utilizing Google Docs had a relatively higher proportion of discourse from lower-achieving students. Additionally, differences were observed in the types of utterances and connection structures between the higher and lower-achieving students. The higher-achieving students took a leading role in providing suggestions and explanations, while the lower-achieving students played a role in transcribing them, with this tendency being more pronounced in the class using Google Docs. Lastly, students' changes in perception regarding the cause of static electricity were visualized using ENA. Based on the research findings, this study proposes strategies to enhance collaborative learning using Google Docs, including the use of open-ended problems to allow diverse opinions and outputs, and exploring the potential use of ENA to assess the learning effects of conceptual learning.

Text Mining-Based Analysis of Hyundai Automobile Consumer Satisfaction and Dissatisfaction Factors in the Chinese Market: A Comparison with Other Brands (텍스트 마이닝을 이용한 현대 자동차 중국시장 소비자의 만족 및 불만족 요인 분석 연구: 다른 브랜드와의 비교)

  • Cui Ran;Inyong Nam
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.539-549
    • /
    • 2024
  • This study employed text mining techniques like frequency analysis, word clouds, and LDA topic modeling to assess consumer satisfaction and dissatisfaction with Hyundai Motor Company in the Chinese market, compared to brands such as Toyota, Volkswagen, Buick, and Geely. Focusing on compact vehicles from these brands between 2021 and 2023, this study analyzed customer reviews. The results indicated Hyundai Avante's positive factors, including a long wheelbase. However, it also highlighted dissatisfaction aspects like Manipulate, engine performance, trunk space, chassis and suspension, safety features, quantity and brand of audio speakers, music membership service, separation band, screen reflection, CarLife, and map services. Addressing these issues could significantly enhance Hyundai's competitiveness in the Chinese market. Previous studies mainly focused on literature research and surveys, which only revealed consumer perceptions limited to the variables set by the researchers. This study, through text mining and comparing various car brands, aims to gain a deeper understanding of market trends and consumer preferences, providing useful information for marketing strategies of Hyundai and other brands in the Chinese market.

Technique to Reduce Container Restart for Improving Execution Time of Container Workflow in Kubernetes Environments (쿠버네티스 환경에서 컨테이너 워크플로의 실행 시간 개선을 위한 컨테이너 재시작 감소 기법)

  • Taeshin Kang;Heonchang Yu
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.3
    • /
    • pp.91-101
    • /
    • 2024
  • The utilization of container virtualization technology ensures the consistency and portability of data-intensive and memory volatile workflows. Kubernetes serves as the de facto standard for orchestrating these container applications. Cloud users often overprovision container applications to avoid container restarts caused by resource shortages. However, overprovisioning results in decreased CPU and memory resource utilization. To address this issue, oversubscription of container resources is commonly employed, although excessive oversubscription of memory resources can lead to a cascade of container restarts due to node memory scarcity. Container restarts can reset operations and impose substantial overhead on containers with high memory volatility that include numerous stateful applications. This paper proposes a technique to mitigate container restarts in a memory oversubscription environment based on Kubernetes. The proposed technique involves identifying containers that are likely to request memory allocation on nodes experiencing high memory usage and temporarily pausing these containers. By significantly reducing the CPU usage of containers, an effect similar to a paused state is achieved. The suspension of the identified containers is released once it is determined that the corresponding node's memory usage has been reduced. The average number of container restarts was reduced by an average of 40% and a maximum of 58% when executing a high memory volatile workflow in a Kubernetes environment with the proposed method compared to its absence. Furthermore, the total execution time of a container workflow is decreased by an average of 7% and a maximum of 13% due to the reduced frequency of container restarts.

Development of a Program for Calculating Typhoon Wind Speed and Data Visualization Based on Satellite RGB Images for Secondary-School Textbooks (인공위성 RGB 영상 기반 중등학교 교과서 태풍 풍속 산출 및 데이터 시각화 프로그램 개발)

  • Chae-Young Lim;Kyung-Ae Park
    • Journal of the Korean earth science society
    • /
    • v.45 no.3
    • /
    • pp.173-191
    • /
    • 2024
  • Typhoons are significant meteorological phenomena that cause interactions among the ocean, atmosphere, and land within Earth's system. In particular, wind speed, a key characteristic of typhoons, is influenced by various factors such as central pressure, trajectory, and sea surface temperature. Therefore, a comprehensive understanding based on actual observational data is essential. In the 2015 revised secondary school textbooks, typhoon wind speed is presented through text and illustrations; hence, exploratory activities that promote a deeper understanding of wind speed are necessary. In this study, we developed a data visualization program with a graphical user interface (GUI) to facilitate the understanding of typhoon wind speeds with simple operations during the teaching-learning process. The program utilizes red-green-blue (RGB) image data of Typhoons Mawar, Guchol, and Bolaven -which occurred in 2023- from the Korean geostationary satellite GEO-KOMPSAT-2A (GK-2A) as the input data. The program is designed to calculate typhoon wind speeds by inputting cloud movement coordinates around the typhoon and visualizes the wind speed distribution by inputting parameters such as central pressure, storm radius, and maximum wind speed. The GUI-based program developed in this study can be applied to typhoons observed by GK-2A without errors and enables scientific exploration based on actual observations beyond the limitations of textbooks. This allows students and teachers to collect, process, analyze, and visualize real observational data without needing a paid program or professional coding knowledge. This approach is expected to foster digital literacy, an essential competency for the future.

An Empirical Study on Business-Viability-Assessment Method Based on Subscription Software Model (구독형SW 모델의 사업성 평가 방안에 관한 실증연구)

  • Kigon Park
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.4
    • /
    • pp.155-165
    • /
    • 2024
  • Software as a Service (SaaS) has become one of the fastest-growing software business models in recent years. Even during the economic downturn following the pandemic, the SaaS business has emerged as a crucial model for IT companies. The revenue structure of SaaS, which is based on the subscription economy model, ensures that users pay only for the services used. In other words, SaaS operates on a subscription-based billing model, thus providing subscribers access to software uploaded to cloud computers via the Internet. This study aimed to explore the manner by which software-solution firms have to counteract the decline in profit and loss sales caused by changing their business-model orientation from on-premise deployment software to subscription-based software. Additionally it analyzes a method for selecting a subscription-based pricing model and rapidly recovering the investment costs via quantitative business-viability assessment. By calculating subscription fees via a more quantitative business-viability evaluation instead of focusing on conventional business-planning methods that rely on qualitative methods, companies are expected to be equipped in providing services to customers at reasonable costs. This strategy will facilitate them in leading emerging growth sectors.

A Study on Determining the Priority of Introducing Smart Ports in Korea (국내 스마트 항만 도입 우선순위 도출 연구)

  • Ryu, Won-Hyeong;Nam, Hyung-Sik
    • Journal of Korea Port Economic Association
    • /
    • v.40 no.1
    • /
    • pp.31-59
    • /
    • 2024
  • In June 2016, the term "Fourth Industrial Revolution" was first used at the World Economic Forum in Davos, Switzerland, and it gained worldwide attention. Consequently, the importance of smart ports has increased as the shipping industry has been incorporating various Fourth Industrial Revolution technologies. Currently, major countries around the world are working to achieve digital transformation in the maritime and port industry by establishing comprehensive smart ports. However, the smartification of domestic ports in South Korea is currently limited to a few areas such as Busan, Incheon, and Gwangyang, focusing on port automation. In this context, this study performed keyword analysis to identify key components of smart ports and conducted Analytic Hierarchy Process (AHP) analysis among relevant stakeholders to determine the priorities for the Introduction of smart ports in South Korea. The analysis revealed that universities prioritized automation, intelligenceization, informatization and environmentalization in that order. Research institutes prioritized informatization, intelligenceization, automation and environmentalization. Government agencies prioritized informatization, automation, intelligenceization and environmentalization, while private sector enterprises prioritized automation, intelligenceization, informatization, and environmentalization.

Effects of Environmental Conditions on Vegetation Indices from Multispectral Images: A Review

  • Md Asrakul Haque;Md Nasim Reza;Mohammod Ali;Md Rejaul Karim;Shahriar Ahmed;Kyung-Do Lee;Young Ho Khang;Sun-Ok Chung
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.4
    • /
    • pp.319-341
    • /
    • 2024
  • The utilization of multispectral imaging systems (MIS) in remote sensing has become crucial for large-scale agricultural operations, particularly for diagnosing plant health, monitoring crop growth, and estimating plant phenotypic traits through vegetation indices (VIs). However, environmental factors can significantly affect the accuracy of multispectral reflectance data, leading to potential errors in VIs and crop status assessments. This paper reviewed the complex interactions between environmental conditions and multispectral sensors emphasizing the importance of accounting for these factors to enhance the reliability of reflectance data in agricultural applications.An overview of the fundamentals of multispectral sensors and the operational principles behind vegetation index (VI) computation was reviewed. The review highlights the impact of environmental conditions, particularly solar zenith angle (SZA), on reflectance data quality. Higher SZA values increase cloud optical thickness and droplet concentration by 40-70%, affecting reflectance in the red (-0.01 to 0.02) and near-infrared (NIR) bands (-0.03 to 0.06), crucial for VI accuracy. An SZA of 45° is optimal for data collection, while atmospheric conditions, such as water vapor and aerosols, greatly influence reflectance data, affecting forest biomass estimates and agricultural assessments. During the COVID-19 lockdown,reduced atmospheric interference improved the accuracy of satellite image reflectance consistency. The NIR/Red edge ratio and water index emerged as the most stable indices, providing consistent measurements across different lighting conditions. Additionally, a simulated environment demonstrated that MIS surface reflectance can vary 10-20% with changes in aerosol optical thickness, 15-30% with water vapor levels, and up to 25% in NIR reflectance due to high wind speeds. Seasonal factors like temperature and humidity can cause up to a 15% change, highlighting the complexity of environmental impacts on remote sensing data. This review indicated the importance of precisely managing environmental factors to maintain the integrity of VIs calculations. Explaining the relationship between environmental variables and multispectral sensors offers valuable insights for optimizing the accuracy and reliability of remote sensing data in various agricultural applications.

Research on the Direction of Building an Integrated Smart Platform at Construction Sites (건설현장 통합 스마트플랫폼 구축방향에 대한 연구)

  • Yeon Cheol Shin;Yu Mi Moon
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.3
    • /
    • pp.620-634
    • /
    • 2024
  • Purpose: This study aims to strengthen the linkage between the construction site and the headquarters, suggest the direction of building an integrated smart platform that can actually be operated and utilized in the field, and effectively implement safety management. Method: Agile methodologies were applied to build a flexible and scalable system through cloud-based and three-tier architectures. Functional requirements were set through an on-site survey, and design and construction were carried out by reflecting personal information protection and legal requirements. Result: The integrated smart platform proposed in this study strengthens the connection between the site and the headquarters to maximize the effect of safety accident prevention and safety management. This system has improved the safety awareness of workers and managers, and has realized more efficient safety management through a unified communication system. Conclusion: In the establishment of an integrated smart platform, it is essential to reflect the characteristics of the site when selecting the development method and establishing the function plan. In the basic design and detailed design stages, it is necessary to establish security measures, design mobile functions, and review device expansion, and consider enterprise-wide safety management, user convenience, and scalability. It is also important to maintain and improve the system, reflect legal requirements, and support the elderly and foreign workers. By strengthening personal information and CCTV security and continuously improving it by reflecting user opinions, it can be expected to activate an integrated smart platform.

An Efficient Dual Queue Strategy for Improving Storage System Response Times (저장시스템의 응답 시간 개선을 위한 효율적인 이중 큐 전략)

  • Hyun-Seob Lee
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.3
    • /
    • pp.19-24
    • /
    • 2024
  • Recent advances in large-scale data processing technologies such as big data, cloud computing, and artificial intelligence have increased the demand for high-performance storage devices in data centers and enterprise environments. In particular, the fast data response speed of storage devices is a key factor that determines the overall system performance. Solid state drives (SSDs) based on the Non-Volatile Memory Express (NVMe) interface are gaining traction, but new bottlenecks are emerging in the process of handling large data input and output requests from multiple hosts simultaneously. SSDs typically process host requests by sequentially stacking them in an internal queue. When long transfer length requests are processed first, shorter requests wait longer, increasing the average response time. To solve this problem, data transfer timeout and data partitioning methods have been proposed, but they do not provide a fundamental solution. In this paper, we propose a dual queue based scheduling scheme (DQBS), which manages the data transfer order based on the request order in one queue and the transfer length in the other queue. Then, the request time and transmission length are comprehensively considered to determine the efficient data transmission order. This enables the balanced processing of long and short requests, thus reducing the overall average response time. The simulation results show that the proposed method outperforms the existing sequential processing method. This study presents a scheduling technique that maximizes data transfer efficiency in a high-performance SSD environment, which is expected to contribute to the development of next-generation high-performance storage systems