• 제목/요약/키워드: Closed-loop system

검색결과 1,427건 처리시간 0.029초

AI based control theory for interaction of ocean system

  • Chen, C.Y.J.;Hsieh, Chia-Yen;Smith, Aiden;Alako, Dariush;Pandey, Lallit;Chen, Tim
    • Ocean Systems Engineering
    • /
    • 제10권2호
    • /
    • pp.227-241
    • /
    • 2020
  • This paper deals with the problem of the global stabilization for a class of tension leg platform (TLP) nonlinear control systems. Problem and objective: Based on the relaxed method, the chaotic system can be stabilized by regulating appropriately the parameters of dither. Scope and method: If the frequency of dither is high enough, the trajectory of the closed-loop dithered chaotic system and that of its corresponding model-the closed-loop fuzzy relaxed system can be made as close as desired. Results and conclusion: The behavior of the closed-loop dithered chaotic system can be rigorously predicted by establishing that of the closed-loop fuzzy relaxed system.

Position Control of a 3 dof Closed -loop Cylinder System Using ER Valve Actuators

  • Park, Seug-Bok;Cho, Myung-Soo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제2권2호
    • /
    • pp.48-56
    • /
    • 2001
  • This paper presents the position tracking control of a closed-loop cylinder system using electro-rheological (ER) valve actuators. After manufacturing three sets of cylindrical ER valves on the basis of Bingham model of ER fluid, a 3 dof(degree-freedom) closed-loop cylinder system having the heave, roll and pitch motions is constructed. The governing equations of motion are derived using Lagrange's equation and a control model is formulated by considering nonlinear characteristics of the system, Sliding mode controllers are the designed for these ER valve actuators in order to achieve position tracking control. The effectiveness of trajectory tracking control performance of the proposed cylinder system is demonstrated through computer simulation and experimental implementation of the sliding mode controller.

  • PDF

ER 밸브 작동기를 이용한 3자유도 폐회로 실린더 시스템의 위치제어 (Position Control of a 3 dof Closed-loop Cylinder System Using ER Valve Actuators)

  • 최승복;조명수
    • 한국정밀공학회지
    • /
    • 제17권3호
    • /
    • pp.165-173
    • /
    • 2000
  • This Paper presents the position tracking control of a closed-loop cylinder system using electro-rheological(ER) valve actuators. After manufacturing three sets of cylindrical ER valves on the basis of Bingham model of ER fluid, a 3 dof(degree-of-freedom) closed-loop cylinder system having the heave, roll and pitch motions is constructed. The governing equations of motion are derived using Lagrange's equation and a control model is formulated by considering nonlinear characteristics of the system. Sliding mode controllers are then designed fer these ER valve actuators in order to achieve position tracking control. The effectiveness of trajectory tracking control performance of the proposed cylinder system is demonstrated through computer simulation and experimental implementation of the sliding mode controller.

  • PDF

PDC Intelligent control-based theory for structure system dynamics

  • Chen, Tim;Lohnash, Megan;Owens, Emmanuel;Chen, C.Y.J.
    • Smart Structures and Systems
    • /
    • 제25권4호
    • /
    • pp.401-408
    • /
    • 2020
  • This paper deals with the problem of global stabilization for a class of nonlinear control systems. An effective approach is proposed for controlling the system interaction of structures through a combination of parallel distributed compensation (PDC) intelligent controllers and fuzzy observers. An efficient approximate inference algorithm using expectation propagation and a Bayesian additive model is developed which allows us to predict the total number of control systems, thereby contributing to a more adaptive trajectory for the closed-loop system and that of its corresponding model. The closed-loop fuzzy system can be made as close as desired, so that the behavior of the closed-loop system can be rigorously predicted by establishing that of the closed-loop fuzzy system.

Development of a irradiation strategy within a closed loop control system for the laser adjustment of deformation

  • Hutterer, A.;Hagenah, H.;Geiger, M.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.2313-2318
    • /
    • 2003
  • By means of flexible forming processes in sheet metal manufacturing it is possible to produce parts of complex geometry within short manufacturing time. These procedures are suitable especially for prototyping or adjustment of deformation. Here formative procedures like laser forming are increasingly important, because they make the large-scale-like production of the prototypes with the required materials possible. High accuracy and reproducibility of the products is the precondition of the production. Due to the lack of a forming tool, complex geometries can hardly be manufactured within tolerances. To overcome this problem an automatic closed loop control system for the adjustment of deformations has been developed. An important element of the closed loop control system is the definition of a suitable irradiation strategy for laser forming. For the determination of the irradiation strategy a lot of influences must be taken into consideration from the field of material, geometry and laser. In this paper the improved closed loop control system and the development of an irradiation strategy for 4 mm deep buckles in an ALMgSi1 sheet will be represented. This system can be used e.g. in the automated adjustment of hail damage in car bodies or deformation by heat treatment.

  • PDF

Identification of the process in closed-loop control system

  • Oura, Kunihiko;Akizuki, Kageo;Hanazaki, Izumi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1994년도 Proceedings of the Korea Automatic Control Conference, 9th (KACC) ; Taejeon, Korea; 17-20 Oct. 1994
    • /
    • pp.140-145
    • /
    • 1994
  • In this paper, we consider a problem to estimate process parameters using input-output data collected from the process operating in closed-loop control system. When orders and delay-time of the process are known correctly, under some conditions of identifying experiments, it is reported that accurate identification results can be obtained by applying prediction error method. To get accurate estimates, it is necessary to know orders and delay-time of the process. It is difficult to determine them in closed-loop identification, because ill-condition for identification are easily caused by selection of unsuitable order or delay time. Furthermore, the procedures to select orders and delay-time in open-loop identification aren't always available in closed-loop identification. The purpose of this paper is to determine a delay-time under suitable assumption that order of the process are known as the first step.

  • PDF

실시간 폐루프 제어 시스템을 위한 Profibus-FMS 네트워크의 구현 (Implementation of Profibus-FMS Network for Real-Time Closed-Loop Control System)

  • 이경창;김기웅;김희현;이석
    • 제어로봇시스템학회논문지
    • /
    • 제6권10호
    • /
    • pp.911-917
    • /
    • 2000
  • As many sensors and actuators are used in various automated systems, the application of network to real-time distributed control system is gaining acceptance in many industries. In order to take advantages of networking, however, the network should be carefully designed to satisfy real-time distributed control. This paper presents an implementation method of closed-loop control using Profibus-FMS. In order to implement a closed-loop control system, we used industrial computers with Profibus-FMS network cards and a DC servo motor. Through various experiments, the step response of the control system with network was compared with the reference response without network.

  • PDF

페루프 극점의 견실성 해석 (Robustness Analysis of Closed-Loop Poles)

  • 이정문;남부희
    • 산업기술연구
    • /
    • 제11권
    • /
    • pp.107-114
    • /
    • 1991
  • This paper deals with the robustness of closed-loop poles of a linear time-invariant system with uncertain parameters. A new method is presented to calculate the perturbation of a pole-located region due to parameter uncertainties. A method to calculate allowable bounds on parameter uncertainties is also presented to retain closed-loop poles in a specified region. Based on Lyapunov equations and norm operations, they provide useful measures on the robustness of closed-loop poles. An example is given to illustrate proposed methods.

  • PDF

Detecting Bladder Biomarkers for Closed-Loop Neuromodulation: A Technological Review

  • Park, Eunkyoung;Lee, Jae-Woong;Kang, Minhee;Cho, Kyeongwon;Cho, Baek Hwan;Lee, Kyu-Sung
    • International Neurourology Journal
    • /
    • 제22권4호
    • /
    • pp.228-236
    • /
    • 2018
  • Neuromodulation was introduced for patients with poor outcomes from the existing traditional treatment approaches. It is well-established as an alternative, novel treatment option for voiding dysfunction. The current system of neuromodulation uses an open-loop system that only delivers continuous stimulation without considering the patient's state changes. Though the conventional open-loop system has shown positive clinical results, it can cause problems such as decreased efficacy over time due to neural habituation, higher risk of tissue damage, and lower battery life. Therefore, there is a need for a closed-loop system to overcome the disadvantages of existing systems. The closed-loop neuromodulation includes a system to monitor and stimulate micturition reflex pathways from the lower urinary tract, as well as the central nervous system. In this paper, we reviewed the current technological status to measure biomarker for closed-loop neuromodulation systems for voiding dysfunction.

이차 이산시스템의 Peak Overshoot을 최소화하기 위한 영점의 위치 설계 (Design of the Zero Location for Minimizing the Peak Overshoot of Second Order Discrete Systems)

  • 이재석;정태상
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 추계학술대회 논문집 학회본부 B
    • /
    • pp.512-514
    • /
    • 1999
  • The damping ratio $\zeta$ of a continuous 2nd order response which passes all the points of the discrete response of a 2nd order discrete system(envelope curve) is a function of only the location of the closed-loop pole and ie not at all related to the location of the zero. And the peak overshoot of the envelope curve is uniquely specified by the damping ratio $\zeta$, which is a function of solely the closed-loop pole location, and the angle $\alpha$ which is determined by the relative location of the zero with respect to the closed-loop complex pole. Therefore, if the zero slides on the real axis with the closed-loop complex poles being fixed, then the angle $\alpha$ changes however the damping ratio $\zeta$ does not. Accordingly, when the closed-loop system poles are fixed, the peak overshoot is function of $\alpha$ or the system zero. In this thesis the effects of the relative location of the zero on the system performance of a second order discrete system is studied.

  • PDF