In this paper, we address some issues in existing seismic hazard closed-form equations and present a novel seismic hazard equation form to overcome these issues. The presented equation form is based on higher-order polynomials, which can well describe the seismic hazard information with relatively high non-linearity. The accuracy of the proposed form is illustrated not only in the seismic hazard data itself but also in estimating the annual probability of failure (APF) of the structural systems. For this purpose, the information on seismic hazard is used in representative areas of the United States (West : Los Angeles, Central : Memphis and Kansas, East : Charleston). Examples regarding the APF estimation are the analyses of existing platform structure and nuclear power plant problems. As a result of the numerical example analyses, it is confirmed that the higher-order-polynomial-based hazard form presented in this paper could predict the APF values of the two example structure systems as well as the given seismic hazard data relatively accurately compared with the existing closed-form hazard equations. Therefore, in the future, it is expected that we can derive a new improved APF function by combining the proposed hazard formula with the existing fragility equation.
The paper presents a new closed-form, not a polynomial-form, solution of the direct kinematics of the 3-6 (Stewart-Gough) Platform. Many research works have presented a single high-order polynomial equation of the direct kinematics. However the polynomial equation causes potential problems such as complicated formulation procedures and discrimination of the actual solution from all roots, which results in time-consuming task and heavy computational burden. Thus, to overcome these problems, we use a new formulation approach, based on the Tetrahedron Approach, to derive easily a closed-form nonlinear equation of the direct kinematics and use not the Newton-Raphson method, but the Secant method to obtain quickly the solution from ...
In this paper, a general closed-form solution for evaluating the dynamic behavior of a Timoshenko beam on elastic foundation under a moving harmonic line load is formulated in the frequency-wavenumber domain and in a moving coordinate system. It is found that the characteristic equation is quartic with real coefficients only, and its poles can be presented explicitly. This enables the substitution of these poles into Cauchy's residue theorem, leading to the general closed-form solution. The solution can be reduced to seven existing closed-form solutions to different sub-problems and a new closed-form solution to the subproblem of a Timoshenko beam on an elastic foundation subjected to a moving quasi-static line load. Two examples are included to verify the solution.
실수축 상의 적분 방법에 의한 정확한 closed-form 그린함수를 이용하여 코플래너 도파로의 불연속에 대한 공간영역 full-wave 해석을 하였다. MPIE(Mixed Potential Integral Equation)를 풀기 위한 수치계산 방법으로는 삼각형 요소를 이용한 갤러킨 방법을 사용하였다. 경계면에서 삼각형 요소상의 기저함수로는 선형함수를 사용하였으며, 관측점과 전원점이 일치하는 특이점 근방의 적분 계산을 위해 면적분을 선적분 형태로 바꾸어 피적분 함수의 특이점이 사라지도록 하는 해석적인 방법을 사용하였다. 실수축 적분방법에 의한 그린함수를 이용함으로써 불연속에 대한 정확한 특성을 구하였다.
제어로봇시스템학회 1994년도 Proceedings of the Korea Automatic Control Conference, 9th (KACC) ; Taejeon, Korea; 17-20 Oct. 1994
/
pp.289-292
/
1994
In this paper, the equations of motion are constructed systematically for multibody systems containing closed kinematic loops. For the displacement analysis of the closed loops, we introduce a new mixed coordinates by adding to the reference coordinates, relative coordinates corresponding to the degrees of freedom of the system. The mixed coordinates makes easy derive the explicit closed form solution. The explicit functional relationship expressed in closed form is of great advantages in system dimension reduction and no need of an iterative scheme for the displacement analysis. This forms of equation are built up in the general purpose computer program for the kinematic and dynamic analysis of multiboty systems.
In this paper the time-dependent closed-form static solution of the suspended pre-stressed biconcave and biconvex cable trusses with unmovable, movable and elastic or viscoelastic yielding supports subjected to various types of vertical load is presented. Irvine's forms of the deflections and the cable equations are modified because the effects of the rheological behaviour needed to be incorporated in them. The concrete cable equations in the form of the explicit relations are derived and presented. From a solution of a vertical equilibrium equation for a loaded cable truss with rheological properties, the additional vertical deflection as a time-function is determined. The time-dependent closed-form model serves to determine the time-dependent response, i.e., horizontal components of cable forces and deflection of the cable truss due to applied loading at the investigated time considering effects of elastic deformations, creep strains, temperature changes and elastic supports. Results obtained by the present closed-form solution are compared with those obtained by FEM. The derived time-dependent closed-form computational model is used for a time-dependent simulation-based reliability assessment of cable trusses as is described in the second part of this paper.
본 연구에서는 적분변환에 의한 해법을 사용하여 폐형으로 주어지는 엄밀해를 얻었다. 먼저 평면에 수직한 방향의 변위를 도입하여 주어진 문제를 Mellin 변환하 고 수식화 하면 Wiener-Hopf 방정식이 주어진다.이 방정식을 푼 다음 변위에 관한 적분 표현식을 점근(asymptotic)전개하여 평가하면 균열선단 부근의 변위가 결정된다. 이로부터 폐형(closed form)으로 구성되는 균열선단부근의 응력확대계수(stress in- tensity factor)를 얻었다. 이 결과를 가지고 특정한 경우에 해당되는 기존의 연구 결과와 비교하였다. 특별히 가해진 하중이 자기평형(self equilibrium)을 이루는 경 우에 한정하여 계면에 인접한 재료의 결과와 동일함을 무한고체물에 대한 해석에서 보 인 바 있는데, 이와같은 정성적인 결과가 본문제와 같이 계면방향 표면균열을 지니는 반무한 크기의 고체물에서도 유지되는가를 검토하였다. 아울러 본 연구와 동일한 모 양의 균열이라면 고체물표면 혹은 균열면에 임의로 분포하는 비평면하중문제에 대한 응력확대계수는 본 연구의 결과를 가지고 간단한 적분을 수행함으로써 용이하게 계산 됨을 보였다.
Critical loads and load-carrying capacities for steel scaffolds used as shoring systems were compared using computational and experimental methods in Part I of this paper. In that paper, a simple 2-D model was established for use in evaluating the structural behavior of scaffold-shoring systems. This 2-D model was derived using an incremental finite element analysis (FEA) of a typical complete scaffold-shoring system. Although the simplified model is only two-dimensional, it predicts the critical loads and failure modes of the complete system. The objective of this paper is to present a closed-form solution to the 2-D model. To simplify the analysis, a simpler model was first established to replace the 2-D model. Then, a closed-form solution for the critical loads and failure modes based on this simplified model were derived using a bifurcation (eigenvalue) approach to the elastic-buckling problem. In this closed-form equation, the critical loads are shown to be function of the number of stories, material properties, and section properties of the scaffolds. The critical loads and failure modes obtained from the analytical (closed-form) solution were compared with the results from the 2-D model. The comparisons show that the critical loads from the analytical solution (simplified model) closely match the results from the more complex model, and that the predicted failure modes are nearly identical.
본 연구는 쿨롱마찰을 갖는 동적시스템의 기초적인 연구로써 단자유도계의 자유진동응답에 대한 닫힌 해를 제공하는 것을 목적으로 한다. 쿨롱마찰을 포함하는 동적시스템의 운동방정식은 운동방향에 따른 마찰력의 부호변화로 인하여 비선형 미분방정식의 형태로 표현되기 때문에 닫힌 형태의 해를 얻기가 매우 어려운 특성이 있다. 이를 해결하기 위한 기존의 방법으로는 수치적분법에 의해 비선형 미분방정식을 직접 계산하거나 또는, 쿨롱마찰에 의한 감쇠효과를 등가점성감쇠로 치환한 선형 미분방정식을 이용하여 간접적으로 해를 구하는 방법이 사용되고 있다. 그러나 이러한 방법들은 수학적인 측면에서 닫힌 해를 제공하지 않는다. 따라서 본 연구에서는 운동방정식에서 반주기 구간마다 반전되는 마찰력의 부호변화를 고려하고, 이를 멱급수를 이용하여 전 구간으로 확장시킴으로써 쿨롱마찰을 고려한 단자유도계의 자유진동응답에 대해서 수학적으로 닫힌 해를 유도하였다. 또한, 마찰력의 크기가 강성에 의한 복원력의 크기보다 커지는 순간에 자유진동 운동이 정지하는 조건을 이용함으로써 주어진 초기조건에 대해서 예측되는 자유진동 반주기의 수와 운동이 정지하는 순간의 정확한 응답 값을 제안하였다
Performance of two vapor pressure correlation equations in a polynomial expression is compared. These are the Wagner-type equation and the Inverted form equation. The equations are fitted to correlate the data in the ASHRAE tables and from NIST Chemistry WebBook for 17 pure substances. Some observations on the exponents in the two polynomial equations are made, which results in a proposal of a new closed form vapor pressure equation. The new equation yields the accuracy comparable to that of the Wagner-type equation and better than that of the Inverted form equation.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.