• Title/Summary/Keyword: Closed-Structure

Search Result 984, Processing Time 0.032 seconds

Visual Sensor Design and Environment Modeling for Autonomous Mobile Welding Robots (자율 주행 용접 로봇을 위한 시각 센서 개발과 환경 모델링)

  • Kim, Min-Yeong;Jo, Hyeong-Seok;Kim, Jae-Hun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.9
    • /
    • pp.776-787
    • /
    • 2002
  • Automation of welding process in shipyards is ultimately necessary, since the welding site is spatially enclosed by floors and girders, and therefore welding operators are exposed to hostile working conditions. To solve this problem, a welding mobile robot that can navigate autonomously within the enclosure has been developed. To achieve the welding task in the closed space, the robotic welding system needs a sensor system for the working environment recognition and the weld seam tracking, and a specially designed environment recognition strategy. In this paper, a three-dimensional laser vision system is developed based on the optical triangulation technology in order to provide robots with 3D work environmental map. Using this sensor system, a spatial filter based on neural network technology is designed for extracting the center of laser stripe, and evaluated in various situations. An environment modeling algorithm structure is proposed and tested, which is composed of the laser scanning module for 3D voxel modeling and the plane reconstruction module for mobile robot localization. Finally, an environmental recognition strategy for welding mobile robot is developed in order to recognize the work environments efficiently. The design of the sensor system, the algorithm for sensing the partially structured environment with plane segments, and the recognition strategy and tactics for sensing the work environment are described and discussed with a series of experiments in detail.

Altitudinal Variation in Species Composition and Soil Properties of Banj Oak and Chir Pine Dominated Forests

  • Kumar, Munesh;Singh, Harpal;Bhat, Jahangeer A.;Rajwar, G.S.
    • Journal of Forest and Environmental Science
    • /
    • v.29 no.1
    • /
    • pp.29-37
    • /
    • 2013
  • The study was carried out in two different forest types viz., Banj oak and Chir pine forests to assess the variation in forest species composition and soil properties along altitudinal gradients in the Garhwal Himalayas. The results of the study showed that between the forests soil moisture was higher in Banj oak forest because of closed canopy and dense forest compared to Chir pine forest. The sand particles were reported higher in Banj oak forest which might be due to the addition of organic matter favouring coarse structure of soil, helping in holding maximum water in soils. However in the Chir pine forest low amount of soil organic matter and presence of clayey soil, develops soil compactness which reduces the penetration of water resulting in high soil bulk density. The higher accumulation of litter and presence of moisture in Banj oak forest favours higher nutrient level of nitrogen, phosphorus and potassium compared to Chir pine forest. The soil organic carbon also reduced with increasing altitude at both gradients. While bulk density has reverse trend with soil organic carbon in both the forests at different peaks of same region. In Banj oak forest, the highest density and total basal cover was reported 1,100 tree $ha^{-1}$ and 58.86 $m^2\;ha^{-1}$ respectively. However, the highest values of density and total basal cover of Chir pine forest was 560 tree$ha^{-1}$ and 56.94 $m^2\;ha^{-1}$ respectively. The total density and basal cover of both the forests reduced with increasing altitude. The study concludes that Banj oak forest has better nutrient cycling ability, well developed foest floor and has a greater protective and productive features compared to the Chir pine forest which is without lower vegetation cover and having only pine litter accumulation which does not allow any other species to grow.

Magnetic Resonant Wireless Power Transfer with L-Shape Arranged Resonators for Laptop Computer

  • Choi, Jung Han;Kang, Seok Hyon;Jung, Chang Won
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.3
    • /
    • pp.126-132
    • /
    • 2017
  • In this study, we designed, measured, and analyzed a rearranged L-shape magnetic resonance coupling wireless power transfer (MR-WPT) system for practical applications with laptops. The typical four resonator MR-WPT (Tx part: source loop and Tx coil; Rx part: Rx coil and load loop) is difficult to apply to small-sized stationary and mobile applications, such as laptop computers, tablet-PCs, and smartphones, owing to the large volume of the Rx part and the spatial restrictions of the Tx and Rx coils. Therefore, an L-shape structure, which is the orthogonal arrangement of the Tx and Rx parts, is proposed for indoor environment applications, such as at an L-shaped wall or desk. The relatively large Tx part and Rx coil can be installed in the wall and the desk, respectively, while the load loop is embedded in the small stationary or mobile devices. The transfer efficiency (TE) of the proposed system was measured according to the transfer distance (TD) and the misaligned locations of the load loop. In addition, we measured the TE in the active/non-active state and monitor-open/closed state of the laptop computer. The overall highest TE of the L-shape MR-WPT was 61.43% at 45 cm TD, and the TE decreased to 27.9% in the active and monitor-open state of the laptop computer. The conductive ground plane has a much higher impact on the performance when compared to the impact of the active/non-active states. We verified the characteristics and practical benefits of the proposed L-shape MR-WPT compared to the typical MR-WPT for applications to L-shaped corners.

Evaluation of Vertical Bearing Capacity of Bucket Foundations in Layered Soil by Using Finite Element Analysis (유한요소해석을 통한 다층지반에서의 버킷기초 수직지지력 산정)

  • Park, Jeong-Seon;Park, Duhee;Yoon, Se-Woong;Saeed-ullah, Jan Mandokhai
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.7
    • /
    • pp.35-45
    • /
    • 2016
  • Estimation of vertical bearing capacity is critical in the design of bucket foundation used to support offshore structure. Empirical formula and closed form solutions for bucket foundations in uniform sand or clay profiles have been extensively studied. However, the vertical bearing capacity of bucket foundations in alternating layers of sand overlying clay is not well defined. We performed a series of two-dimensional axisymmetric finite element analyses on bucket foundations in sand overlying clay soil, using elasto-plastic soil model. The load transfer mechanism is investigated for various conditions. Performing the parametric study for the friction angles, undrained shear strengths, thickness of sand layer, and aspect ratios of foundation, we present the predictive charts for determining the vertical bearing capacities of bucket foundations in sand overlying clay layer. In addition, after comparing with the finite element analysis results, it is found that linear interpolation between the design charts give acceptable values in these ranges of parameters.

A Study on the Effect of School Construction Work on the Learning Environment (교내 건설공사로 인한 학습환경 영향요인에 관한 연구)

  • Park, Sung Choon;Lee, Young Dae;Go, Seong Seok
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.4
    • /
    • pp.128-134
    • /
    • 2015
  • The number of schools which have passed 30 years after the construction takes up 30% (5% falling to class D and E) in Korea. So, the offices of education across the nation conduct large works for the expansion, improvement and renovation of the school. But as the work takes a lot of time, the work is also conducted while the students are studying at the schools. The work at the school causes the noise, dust, vibration as the school often has the reinforced concrete structure. So, as the windows are closed to prevent the nuisance from hampering the education, the problems related to the illumination, ventilation, and control of humidity and temperature are give damages to students studying the school buildings. Actually, as the current renovation or expansion is conducted across the nation due to the implementation of the new education system and the resulting integration and construction of hub school, specialized school, meister school and it causes a lot of nuisance to the learning students and others, there are a lot of complaints from concerned people. Accordingly this study suggests the method of evaluating the factors which affect the learning environment such as the noise, dust or fine dust and reducing the nuisances to the level proper for the learning environment when the existing school is expanded, improved or renovated.

Diameter Expansion of 6H-SiC Single Crystals by the Modification of Crucible Structure Design (도가니 구조 변경을 통한 6H-SiC 단결정의 직경 확장에 관한 연구)

  • Kim, Jung-Gyu;Kyun, Myung-Ok;Seo, Jung-Doo;An, Joon-Ho;Kim, Jung-Gon;Ku, Kap-Ryeol;Lee, Won-Jae;Kim, Il-Soo;Shin, Byoung-Chul
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.7
    • /
    • pp.673-679
    • /
    • 2006
  • A sublimation method using the SiC seed crystal and SiC powder as the source material is commonly adopted to grow SiC bulk single crystal. However, it has proved to be difficult to achieve the high quality crystal and the process reliability because SiC single crystal should be grown at very high temperature in closed system. In this study, SiC crystal boules were prepared with different angles in trapezoid-shaped graphite seed holders using sublimation physical vapor transport technique (PVT) and then their crystal quality was systematically investigated. The temperature distribution in the growth system and the crystal shape were varied with angles in trapezoid-shaped graphite seed holders, which was successfully simulated using 'Virtual Reactor'. The SiC polytype proved to be the n-type 6H-SiC from the typical absorption spectrum of SiC crystal. The micropipe densities of SiC wafers in this study were measured to be < $100/cm^2$. Consequently, SiC single crystal with large diameter was successfully achieved with changing angle in trapezoid-shaped graphite seed holders.

Ultimate Strength Analysis of Stiffened Plate with Minor Collision Damage (작은 충돌손상을 가진 보강판의 최종강도 해석)

  • Lee, Tak-Kee;Rim, Chae-Whan
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.4
    • /
    • pp.34-37
    • /
    • 2007
  • The safety of ships is one of the most important concerns in terms of the environment and human life. A ship in bad condition is likely to be subject to accidents, such as collision and grounding. When a ship has minor collision damages in the form of circle or ellipse, its ultimate strength will be reduced. It is important to evaluate the reduction ratio of a ship's ultimate strength that results from damages. The strength reduction of a plate with a cutout in the form of hole has been treated by many researchers. A closed-form formula for the reduction of ultimate strength of a plate, considering the effect of several forms of cutout, has been suggested. However, the structure of ships is composed of plates and stiffeners so-called stiffened plates and it is likely that plates and stiffeners will be damaged together in collisions. This paper investigates the effect of minor collision damages on the ultimate strength of a stiffened plate by using numerical analysis. For this study, the deformed shape of minor collision damages on a stiffened plate was made by using a contact algorithm and was used as the initial shape for ultimate stress analysis. Then, a series of nonlinear FE analyses was conducted to investigate the reduction effects on the ultimate strength of the stiffened plate. The boundary conditions were simply supported at all boundaries, and the tripping of stiffener was neglected. The results are presented in the form of reduction ratio between the ultimate strength of an original, intact stiffened plate and that of a damaged stiffened plate.

The Relationship between the User's Perception of Socio-cultural Attributes and the Spatial Structures of Dwelling Spaces - a Comparative Study between Korean and German Housings - (거주자의 대 사회적 개념과 주거공간의 영역별 구성체계와의 관계 - 한국과 독일의 주거형태학적 비교관찰을 통하여 -)

  • 전남일
    • Journal of the Korean housing association
    • /
    • v.13 no.5
    • /
    • pp.31-42
    • /
    • 2002
  • This comparative study between Korean and German housings aims at understanding different structural systems in the indoor and outdoor spaces, depending upon the user′s perception of the socio-cultural attributes. The analysis starts with four alternative contrary assumptions, that appear in morphological forms of dwelling; 1) linear distribution vs. areal distribution of residential districts, 2) mirror system vs. comb system in the layout of plot plans 3) organization of front vs. back outdoor spaces and 4) opening vs. closing in the indoor spaces. A clear difference is found between Korean and German samples in view of public and private relationships between indoor and outdoor spaces as well as the intermediate space. In the korean housing there always exists a symbolic and psychological territory of a certain sphere. On the other hand, outdoor space passes through various phases only to form a certain hierarchy even in a private space and, thereby, sets a boundary between private and public areas. In the case of Germany, the building itself draws a clear line between private and public outdoor spaces, and therefore the outdoor space has a "front" and "back". Thus, Germany′s private space may face a genuine public space and street, which is rare in the Korean housing. Although the layout of indoor space in the korean housing tends to be open, such an openness may be outstanding in living and dining spaces, kitchen and various accesses to rooms. In the case of Germany, such indoor spaces are usually closed to each other. Thus corridors act to separate these spaces. Such differences are analysed to be due to the different perceptions of interpersonal and socio-cultural attributes as intra-family and inter-neighbor relationships or communications.

A ROENTGENOCEPHALOMETRIC STUDY OF THE BONY STRUCTURE AND ITS PROFILE (두부방사선규격사진법에 의한 측모의 경조직과 연조직에 관한 연구)

  • Kang, Hong Koo
    • The korean journal of orthodontics
    • /
    • v.6 no.1
    • /
    • pp.17-24
    • /
    • 1976
  • The primary objective of this study was to define the differences that exist. between different sexes on the dentoskeletal framework and the soft tissue profile around the mouth. For the purpose of this study, cephalometric radiographs were obtained from the centric occlusion with closed lip position, through the research on each 42 males and females aged from 17 to 22 years with normal occlusion and acceptable facial appearence. The results were as follows: 1. Maxillary to mandibular relationships. Among the angles formed by the long axis of the maxillary and mandibular anterior teeth, the maxillary and mandibular anterior alveolar bone, and the lower and upper lips (Fig.2), only the angle formed by the lips was more acute in males than in females. The males have a more rounded profile, and the females have a flatter profile in the lower third of the face. The differences is statistically significant for the angle formed by the lips. The fact that the lips have a difference greater than that of teeth or the alveolar bone indicates that the lip position is not entirely due to tooth and bony support. Possibly the thickness of the lips has an influence. 2. Occlusal plane. The occlusal plane was related to the anterior tooth inclination, anterior alveolar bone profile, and the lip contour, both maxillary and mandibular (Fig.3). Only the angle related to lower lip was statistically significant. The females again had the more obtuse angle, indicating a flatter profile than that of the males. 3.Skeletal planes. The angles formed by the anterior maxillary lips, teeth, and alveolar bone with the Frankfort plane and the angles of the mandibular lips, teeth, and, alveolar bone and the mandibular plane were investigated (Fig.4). Results were similar to those from maxillary to mandibular relationships. The results were statistically significant for the upper lip and the lower lip, only. 4. Esthetics. The facial line and the mandibular plane were compared with the esthetic line. These angles were different for the different sexes, but only the latter was statistically significant. This difference may be due to the profile contour of the nose.

  • PDF

A follow-up study on extracorporeal fixation of condylar fractures using vertical ramus osteotomy

  • Park, Sung Yong;Im, Jae Hyoung;Yoon, Seong Hoe;Lee, Dong Kun
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.40 no.2
    • /
    • pp.76-82
    • /
    • 2014
  • Objectives: The aim of this study is to report the results of extracorporeal fixation in patients with mandibular condylar fractures and compare them with the clinical results of conservative treatment. Materials and Methods: The medical records of 92 patients (73 male [M] : 19 female [F], age 13-69 years, mean 33.1 years) treated for condylar fractures at the Department of Oral and Maxillofacial Surgery in Sun Dental Hospital (Daejeon, Korea) from 2007 to 2012 were reviewed. Patients were divided into three groups: group A (23 patients; M : F=18 : 5, age 21-69 years, mean 32.6 years), treated with extracorporeal fixation; group B (30 patients; M : F=24 : 6, age 16-57 years, mean 21.1 years), treated by conventional open reduction; and group C (39 patients; M : F=31 : 8, age 16-63 years, mean 34.4 years), treated with the conservative method ('closed' reduction). Clinical and radiographic findings were evaluated and analyzed statistically. Results: Occurrence of postoperative condylar resorption correlated with certain locations and types of fracture. In this study, patients in group A (treated with extracorporeal fixation) did not demonstrate significant postoperative complications such as malocclusion, mandibular hypomobility, temporomandibular disorder, or complete resorption of condyle fragments. Conclusion: In superiorly located mandibular condyle fractures, exact reconstruction of condylar structure with the conventional open reduction technique can be difficult due to the limited surgical and visual fields. In such cases, extracorporeal fixation of the condyle using vertical ramus osteotomy may be a better choice of treatment because it results in anatomically accurate reconstruction and low risk of complications.