• Title/Summary/Keyword: Closed-Loop System

Search Result 1,427, Processing Time 0.032 seconds

Design of Full-Order Observer-based SM-MF Controller including CLF for Power System Stabilizer : Part 4 (전력계통안정기를 위한 폐-루우프 피이드백을 가진 전-차수 관측기에 기준한 SM-MF 제어기 설계 : Part4)

  • Lee, Sang-Seung;Park, Jong-Keun
    • Proceedings of the KIEE Conference
    • /
    • 1997.07c
    • /
    • pp.1171-1173
    • /
    • 1997
  • This paper presents the sliding mode observer-model following(SMO-MF) power system stabilizer(PSS) for unmeasurable plant state variables. This SMO-MF PSS can be obtained by combining the sliding mode-model following(SM-MF) including closed-loop feedback(CLF) with the linear foil-order observer(LFOO).

  • PDF

Analysis of Transmission Power System with Superconducting Fault Current Limiter for Reducing a Fault Current (초전도 한류기 적용을 통한 모의 송전계통의 고장 전류 저감 분석)

  • Kim, Myong-Hyon;Kim, Jin-Seok;Lim, Sung-Hun;Kim, Jae-Chul;Choo, Dong-Wook
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.718-719
    • /
    • 2011
  • Lately, the demand for electrical power has been significantly increased. As a result a power transmission system has been improved. On the other hand fault current increased more than past. Superconducting fault current limiter (SFCL) is one of the solutions to limit fault current. However, SFCL's research has not advanced in a power transmission system fully. Therefore, we studied effect of SFCL in a power transmission system. The power distribution system is open-loop circuit, but a power transmission system is closed-loop system. Consequently, Fault current in a power transmission system is larger than fault current in a power distribution system. we exerimented a simple closed-loop power transmission system circuit.

  • PDF

A Study on the Dynamic Analysis of Multibody System by the Relative Joint Coordinate Method (상대이음좌표방법을 이용한 다물체 시스템의 동역학적 해석에 관한 연구)

  • 이동찬;배대성;한창수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.8
    • /
    • pp.1974-1984
    • /
    • 1994
  • This paper presents a relative coordinate formulation for constrained mechanical systems. Relative coordinates are defined along degrees of freedom of a joint. Graph theoretic analyses are performed to identify topological paths in mechanical systems. Cut constraints are generated to handle closed loop systems. Equations of motion are derived in the Cartesian space and transformed to the joint space. Relative generalized coordinates are corrected to satisfy the cut constraints by a parametrizatiom method.

A PID Controller Tuning of time delay system using VRFT (VRFT를 이용한 시간지연 시스템의 PID 제어기 동조)

  • Oh, Yun-Ki;Suh, Byung-Suhl
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1840-1841
    • /
    • 2006
  • Plants with long time-delays can not be often controlled effectively using a simple PID controller. The main reason for this is that the additional phase lag contributed by the time-delay tends to destabilize the closed-loop system. The stability problem can be solved by smith predictor. However, in this case responses are very sensitive to the estimated model errors. To reduce sensitive problem, this paper is presented based on virtual reference feedback tuning of the time delay plant using the closed-loop test to find parameters for a PID controller using the closed-loop test data.

  • PDF

Robustness of Positive Position Feedback Control in the Independent Modal Space (독립된 모달공간에서 양 위치피드백 제어기법의 강인성)

  • 황재혁;백승호
    • Journal of KSNVE
    • /
    • v.4 no.2
    • /
    • pp.177-185
    • /
    • 1994
  • In this study, the effect of parameter errors on the closed-loop behavior of flexible structure is analyzed for IMSC(Independent Modal Space Control) with PPF(Positive Position Feedback). If the control force designed on the basis of structure model with the parameter errors is applied to control the actual system, the closed-loop performance of the actural system will be degraded depending on the degree of the errors. An asymptotic stability condition has been derived, using Lyapunov approach, which is independent of the dynamic characteristics of the structure being controlled. The extent of deviation of the closed-loop performance from the designed one is also derived and evaluated using operator techniques. It has been found that the extent of the deviation is proportational to the magnitude of the parameter errors, and that the proportional coefficient depends on the control algorithm.

  • PDF

Intelligent Digital Redesign for Nonlinear Interconnected Systems using Decentralized Fuzzy Control

  • Koo, Geun-Bum;Park, Jin-Bae;Joo, Young-Hoon
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.3
    • /
    • pp.420-428
    • /
    • 2012
  • In this paper, a novel intelligent digital redesign (IDR) technique is proposed for the nonlinear interconnected systems which can be represented by a Takagi-Sugeno (T-S) fuzzy model. The IDR technique is to convert a pre-designed analog controller into an equivalent digital one. To develop this method, the discretized models of the analog and digital closed-loop system with the decentralized controller are presented, respectively. Using these discretized models, the digital decentralized control gain is obtained to minimize the norm between the state variables of the analog and digital closed-loop systems and stabilize the digital closed-loop system. Its sufficient conditions are derived in terms of linear matrix inequalities (LMIs). Finally, a numerical example is provided to verify the effectiveness of the proposed technique.

Experimental Study on Heat Exchange Efficiency of Combined Well & Open-Closed Loops Geothermal System (지하수정호와 결합한 복합지열시스템의 열교환 효율에 대한 실험적 연구)

  • Song, Jae-Yong;Lee, Geun-Chun;Park, Namseo
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.5
    • /
    • pp.43-50
    • /
    • 2018
  • The temperature of underground water generally remains constant regardless of the season. therefore, it is possible to get plenty of energy if we use characteristics of underground water for both cooling and heating. This study evaluates efficiency of real size coaxial and U-tube type complex geothermal system which is combined with underground water well. This study also evaluates relative efficiency/adaptability through comparison with existing geothermal systems(vertical closed loop system, open loop system(SCW)). The heat exchange capacity of complex geothermal system according to temperature difference between circulating water and underground water shows very high significance by increasing proportionally. The temperature change of underground water according to injection energy, shows very high linear growth aspect as injection thermal volume heightens. As a result of evaluation of heat exchange volume between complex geothermal system and comparative geothermal system, coaxial type has 26.1 times greater efficiency than comparative vertical closed type and 2.8 times greater efficiency than SCW type. U-tube type has 26.5 tims greater efficiency than comparative vertical closed type and 2.8 times greater than SCW type as well. This means complex geothermal system has extremely outstanding performance.

Creation and Use of Process oriented Knowledge for Effective FRACAS (효과적인 FRACAS 운용을 위한프로세스 지식의 생성과 활용)

  • Lee, Jae-Hoon;Yoo, Ki-Hoon;Kim, Ki-Young;Seol, Dong-Jin;Jang, Joong-Soon
    • Journal of Applied Reliability
    • /
    • v.8 no.3
    • /
    • pp.113-124
    • /
    • 2008
  • In reliability engineering, failure reporting, analysis, and corrective action system (FRACAS) is an useful tool for effective failure reporting and related operations. FRACAS is generally mainly focused on implementation of its closed-loop process, but also includes various related information which has to be effectively managed such as failure types, failure modes, failure mechanisms, and corrective actions. In this study, we adopt and utilize the concept of process knowledge, and create it through abstraction of FRACAS information. At each step of closed-loop process, the necessary type of knowledge, priority and usability are clearly defined. This study also suggests corresponding management tools such as business process management system, knowledge management system, and their key elements and functions to deal with process knowledge. A prototype system using simple closed-loop process with its process knowledge is presented to demonstrate the feasibility of the proposed work.

  • PDF

Novel Control Method for a Hybrid Active Power Filter with Injection Circuit Using a Hybrid Fuzzy Controller

  • Chau, MinhThuyen;Luo, An;Shuai, Zhikang;Ma, Fujun;Xie, Ning;Chau, VanBao
    • Journal of Power Electronics
    • /
    • v.12 no.5
    • /
    • pp.800-812
    • /
    • 2012
  • This paper analyses the mathematical model and control strategies of a Hybrid Active Power Filter with Injection Circuit (IHAPF). The control strategy based on the load harmonic current detection is selected. A novel control method for a IHAPF, which is based on the analyzed control mathematical model, is proposed. It consists of two closed-control loops. The upper closed-control loop consists of a single fuzzy logic controller and the IHAPF model, while the lower closed-control loop is composed of an Adaptive Network based Fuzzy Inference System (ANFIS) controller, a Neural Generalized Predictive (NGP) regulator and the IHAPF model. The purpose of the lower closed-control loop is to improve the performance of the upper closed-control loop. When compared to other control methods, the simulation and experimental results show that the proposed control method has the advantages of a shorter response time, good online control and very effective harmonics reduction.

A study on the implementation of closed-loop system using the stepper motor back-EMF (스텝모터 역기전력을 이용한 폐루프 시스템 구현에 관한 연구)

  • Im, Sungbeen;Jeong, Sanghwa
    • Journal of the Korea Safety Management & Science
    • /
    • v.17 no.3
    • /
    • pp.363-370
    • /
    • 2015
  • In this paper, the control technique of the stepping motor using back electromotive force(B-EMF) without encoder is investigated. The stepping motor generally uses the rotary encoder to detect the rotor position. Since this method increases the cost and the motor configuration size, the new closed-loop control method applied for the B-EMF was implemented by using current detect circuit, AD-converter, and micro controller unit(MCU). The control loop of stepping motor became very simplified. The current change of stepping motor measured by the amplifier was measured and analyzed, when the missing step is occurred. Based on the data from current feedback, position errors were compensated and confirmed by using AD-converter.