• 제목/요약/키워드: Closed-Die Forging

검색결과 87건 처리시간 0.02초

배압 성형기술을 이용한 Lock-up Hub의 정형제조 기술에 관한 연구 (A Study on Net-shape Technology of Automotive Lock-up Hub using Cold Back Pressure Forming)

  • 권용철;이정환;이영선
    • 소성∙가공
    • /
    • 제17권2호
    • /
    • pp.124-129
    • /
    • 2008
  • Net shape forging technologies give many effects into the costs and qualities for the finished products. So, the studies to reduce the additional machining amount are very important in forging industry. Specially, there are two main topics in cold forging industry, such as, tool life and precision forging. In this study, new forging technique was proposed to eliminate the machining process for fixing up the length and improve the lead accuracy of gear. The luck-up hub is manufactured through many processes, such as upsetting, piercing and direct extrusion. The gear is formed in direct extrusion process; however, lead accuracy of the gear is over allowance limit. Therefore, the additional sizing process must be added. In this study, process design for closed-die forging of a lock-up hub used for a component of automobile transmission was made using three-dimensional finite element simulations, and the strain distributions and velocity distributions are investigated through the post processor. The rigid-plastic finite-element method for back pressure forging has been used in order to reduce development time and die cost. Using the FEM simulation, we found the optimum value of back pressure. The prototypes of lock-up hub parts were forged into the net-shape. In the experiment, lead precision of tooth are measured by the CCMM(Contact Coordinate Measuring Machine). The dimensional accuracy of forged part was improved up to the 40% when back press was applied.

레이저 프린터용 샤프트 밀폐단조 성형해석 (An Analysis of Closed Die Forging of Laser Printer Shaft by Finite Element Method)

  • 차성훈;신명수;김종호;나승우;김종봉
    • 소성∙가공
    • /
    • 제18권2호
    • /
    • pp.150-155
    • /
    • 2009
  • A shaft for laser printers has to be produced with high dimensional accuracy of a few micrometers. Most companies produce the shaft, therefore, by machining. These days, forging process is tried to be employed in manufacturing the shaft for productivity. In this study, the dimensional inaccuracy of straightness is studied and the underfill is not focused because the shaft shape is simple and the load capacity of press is sufficient. The straightness and concentricity of the shaft is important for the operation of a laser printer. Many design parameters such as preform shapes, tooling dimensions, forging load, and billet geometries may affect on the dimensional accuracy. In the forging process of shafts, a billet which is cut from wires is used. The billet, therefore, may be a little bit curved but not always straight. The elastic recovery is considered to cause the dimensional inaccuracy. Therefore, the effect of the forging load on the elastic recovery and straightness is investigated through the finite element analyses using DEFORM-3D and ABAQUS.

SAF 2507 스텐레스강의 열간단조해석에서 가공열 보정의 효과 (The Effect of Deformation Heat Compensation in the Hot Forging Analysis of SAF 2507 Stainless Steel)

  • 방원규;정재영;장영원
    • 소성∙가공
    • /
    • 제10권3호
    • /
    • pp.206-213
    • /
    • 2001
  • Dynamic deformation of metallic materials mostly accompanies substantial amounts of deformation heat. Since the flow stress of deformation is sensitive to temperature, implication of heat due to plastic work is essential to the evaluation of constitutive relations. In this study, a series of compression tests were conducted for SAF 2507 super duplex stainless steel at various temperatures and strain rates. The accumulation of plastic work was calculated through numerical integration and converted into the elevation of temperature. Subsequent logarithmic interpolation deduced isothermal flow surfaces, which were primary input data of finite element analysis. Simple closed die forging process was analyzed and optimized with commercial FEM code applying both raw and calibrated material database. The effect of accounting deformation heat was more noticeable in high-speed forming process.

  • PDF

축대칭 성형공정에 대한 유동함수 상계요소법의 프로그램 개발에 관한 연구 (A Study on Developementof UBST Program for Axisymmetric Metal Forming Process)

  • 김영호;배원병;박재우;엄태준
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1995년도 춘계학술대회논문집
    • /
    • pp.124-130
    • /
    • 1995
  • An upper-bound elemental stream function technique(UBST) is proposed for solivng forging and backward extrusion problems that are geometrically complex or need a forming simulation . And in the forging problems, this study investigates that layer of elements effects dissipation of total energy and load. The element system of UBSTuses the curve fitting property of FEM and the fluid incompressiblity of the stream function . The foumulated optimal design problems with constraints ae solved by the flixible toerance method. In the closed-die forging and backward extrusion, the result of layer of element by this study produces a lower upper-bound solution than that fo UBET and conventional layer of element . And the main advantage of UBST program is that a computer code, once written , can be used for a large variety problems by simply changing the input data.

  • PDF

Thixoforming을 응용한 금속복합재료의 콤푸레서용 피스톤 제품의 성형 (Forming of Compressor Piston Part of Metal Matrix Composites by Thixoforming Process)

  • 이동건;강충길
    • 소성∙가공
    • /
    • 제10권3호
    • /
    • pp.223-234
    • /
    • 2001
  • The characteristics of thixoforming process can decrease liquid segregation because of the improvement in fluidity in a globular microstructure state and utilizes flow without an air entrapment. Therefore, in order to obtain the sound parts of metal matrix composites by using thixoforming process which has co-existing solidus-liquidus phase, it is very important to design a die shape property and to obtain the fabrication conditions which affect the unifomity of the solid fraction on unfilling state and various defects throughout the fabricated parts. The die designs and fabrication conditions to obtain the good piston part are proposed for thixoforging process of metal matrix composites. When reheated metal matrix composites billets were transferred to the closed die gate, thixoforging were carried out under the various pressure(60, 80, 100MPa) with controled forging speed. The mechanical properties such as hardness and tensile strength for thixoforged parts have been investigated after T6 heat treatment.

  • PDF

소성가공시 재료유동에 대한 수치해석 및 모델실험 (Analysis of Mateiral Flow in Metal Forming Processes by Using Computer Simulation and Experiment with Model Material)

  • 김헌영;김동원
    • 대한기계학회논문집
    • /
    • 제17권2호
    • /
    • pp.285-299
    • /
    • 1993
  • 본 연구에서는 UBET를 이용한 프로그램을 개발하여 소성가공 문제에 적용하였 으며, 형단조 가공에서 형 내부의 재료의 비정상 유동을 해석할 수 있는 알고리듬을 제시하였다. 매 변형단계에서 요소별 가공경화를 고려하여 자동적으로 요소시스템 (element system)을 재구성함으로써, UBET에 의한 소성가공 문제 해석을 효율적으로 할 수 있도록 하였다. 축대칭 형단조 문제에 있어서 리브의 높이대 폭의 비가 1.0, 2.0일때 UBET 및 탄소성 유한요소법에 의하여 형 내부의 재료 층만 과정을 시뮬레이션 하였으며, 단조 하중, 다이 충만도 및 재료의 유동 경향을 분석하여 적절한 유동 모델 과 초기 소재의 형상을 구하였다. 모델 재료를 사용한 형단조 모의실험을 수행하여 재료유동 및 변형 단계별 단조 하중분포 등을 구하였으며, 해석결과와 비교 분석하였 다. 또한 후방압출(backward extrusion) 및 평두형 펀치에 의한 평판압입(flat pu- nch indentation) 문제를 해석하였다. 후방압출시 모서리부의 라운딩(rounding) 효 과가 재료 유동에 미치는 영향을 고려하였으며, 평두형 펀치에 의한 평판압입에서는 상당 소성변형률(equivalent plastic strain)의 분포를 탄소성 유한요소법(elastic plastic finite element method)에 의한 결과와 비교하였다.

배압 성형기술을 이용한 Lock-up Hub의 정형제조 기술에 관한 연구 (A study on Net-shape technology of Automotive Lock-up Hub using Cold back pressure forming)

  • 권용철;이정환;이영선
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 추계학술대회 논문집
    • /
    • pp.173-176
    • /
    • 2007
  • The characteristics of the tool system give many effects into the costs and qualities for the finished components. This study proposes a new method for manufacturing of high manufacturing productivity, production process reduction and low cost through back pressure forming. The Lock-up hub is manufactured through many processes, such as upsetting($1^{st}$ Forming), piercing, direct extrusion($2^{nd}$ Forming), final sizing process($3^{rd}$ Forming). In this study, process design for closed-die forging of a Lock-up hub used for a component of automobile transmission was made using three-dimensional finite element simulations, and the strain distributions and velocity distributions are investigated through the post processor. The rigid-plastic finite-element method for back pressure forging has been used in order to reduce development time and die cost. Using the FEM simulation, we found the optimum value of back pressure. The prototypes of Lock-up hub parts were forged into the net-shape. In the experiment, lead precision of tooth are measured by the CCMM(Contact Coordinate Measuring Machine). The dimensional accuracy of forged part was improved up to the 40% when back press was applied.

  • PDF

미세조직 변화를 고려한 대형 배기밸브 스핀들 제조공정 해석 (A Manufacturing Process analysis of Large Exhaust Valve Spindle considering Microstructure Evolution)

  • 정호승;조종래;박희천
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권8호
    • /
    • pp.938-945
    • /
    • 2005
  • The microstructure evolution in hot forging process is composed of dynamic recrystallization during deformation as well as grain growth during dwell time. Therefore, the control of forging parameters such as strain, strain rate. temperature and holding time is important because the microstructure change in hot working affects the mechanical properties. Modeling equations are developed to represent the flow curve. grain size. recrystallized volume fraction and grain growth phenomena by various tests. The developed modeling equations were combined with thermo-viscoplastic finite element modeling to predict the microstructure change evolution during hot forging process. The large exhaust valve spindle (head diameter of 512mm) was simulated by closed die forging with hydraulic press and cooled in air after forging. The preform was heated to each 1080 and 1150$^{\circ}C$. Numerical calculation was performed by DEFORM-2D. a commercial finite element code. Heat transfer can be coupled with the deformation analysis in a non-isothermal deformation analysis. In order to obtain the fine and homogeneous microstructure and good mechanical properties in forging. the FEM would become a useful tool in the simulation of the microstructure development. In forging, appropriate temperature, strain and strain rate and rapid cooling are required to obtain the fine grain microstructure The optimal forging temperature and effective strain range of Nimonic 80A for large exhaust valve spindle are about 1080$\∼$l120$^{\circ}C$ and 150$\∼$200$\%$.

열간단조시 금형과 소재간 계면열전달계수에 관한 연구 (A Study of Interface Heat Transfer Coefficient Between Die and Workpiece for Hot Forging)

  • 권진욱;이정환;이영선;권용남;배원병
    • 소성∙가공
    • /
    • 제14권5호
    • /
    • pp.460-465
    • /
    • 2005
  • The temperature difference between die and workpiece has been frequently caused to various surface defects. The distribution and change for the temperature of forged part should be analyzed to prevent the generation of various defects related with the temperature. The surface temperature changes were affected with the interface heat transfer coefficient. Therefore, the coefficient is necessary to predict the temperature changes of die and workpiece. In this study, the experimental and FE analysis were performed to evaluate the coefficient with a function of pressure, temperature, material, and etc. The closed die upsetting was used to measure the coefficient on pressure over the flow stress. AISI1045, A16061, and Cu-OFHC were used to analyze the effect of material. The coefficient was increased with step-up of pressure between die and workpiece. And, A16061 was larger than that of the AISI1045 and Cu-OFHC up to the five times.

강소성 유한요소법에서 비압축성조건의 비교 연구 (A Comparative Study of the Incompressibility Constraint on the Rigid Plastic Finite Element Method)

  • 이상재;조종래;배원병
    • 소성∙가공
    • /
    • 제8권1호
    • /
    • pp.47-56
    • /
    • 1999
  • The governing functional in plastic deformation has to satisfy the incompressibility constraint. This incompressibility constraint imposed on velocity fields can be removed by introducing either Lagrange multiplier or the penalty constant into the functional. In this study, two-dimensional rigid plastic FEM programs using these schemes were developed. These two programs and DEFORM were applied in a cylinder upsetting and a closed die forging to compare the values of load, local mean stress and volume loss. As the results, the program using Lagrange multiplier obtained a more exact and stable solution, but it took more computational time than the program using the penalty constant. Therefore, according to user's need, one of these two programs can be chosen to simulate a metal forming processes.

  • PDF