• Title/Summary/Keyword: Closed Die

Search Result 123, Processing Time 0.025 seconds

A Study on the Properties of Cold Forging P/M Products by Incremetal Forming Process (회전 성형법에 의한 분말단조 제품특성에 관한 연구)

  • 윤덕재;나경환;김영은
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.03a
    • /
    • pp.31-40
    • /
    • 1995
  • Powder metallurgy process has many advantages such as hight efficientyof material, mass productivity and complex shape production with good mechanical properties. Among the powder forming processes, incremental forging allows the consolidation to be achieved with amaller force then those required by conventional forging. In particular the proces known as rotary forging is an unique and prodominant process known as rotary forging is an unique and prodominant process in which the working constraints approximate to those in normal closed die forging. This study is concerned with the powder compaction by rotary forging process. An experimental rotary forging press with 500kN load capacity has been developed, which is equippe dwith the rotational conicla die inclined to the central axis of the press at arbitrary angle. It is found that the highly densified P/M parts can be obtained by rotary forging process and the material properties are superior to those of the conventrional sintered parts. The detailedcomparision of the mechanical properties by rotary forging process with those by conventional process are given.

  • PDF

A Study on the Optimum Velocity Fields in Plane-strain and Axisymmetric Forging (평면변형 및 축대칭 단조에서 최적 속도장에 관한연구)

  • 김진욱
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.3
    • /
    • pp.379-388
    • /
    • 1999
  • Au upper bound elemental technique(UBET) program has been developed to analyze forging load die-cavity filling and optimum kinematically admissible velocity fields for flashless forging. The simulation for flashless forgings are applied plane-strain and axisymmetric closed-die forging with rib-web type cavity. The kinematically admissible velocity fields for inverse triangular and inverse trapezoidal elements are used to analyze flashless forging,. Experiments have been carried out with pure plasticine billets at room temperature. Theoretical predictions of the forging load in plane-strain and axisymmetric forging are in good agreement with experimental results.

  • PDF

Fabrication of a buckling micro MCA valve (버클링 마이크로 적층형 압전밸브의 제작)

  • Lee, Jong-Hwa;Chung, Gwiy-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.47-52
    • /
    • 2006
  • This paper describes the design, fabrication and characteristics of a buckling microvalve using a MCA (multilayer ceramic actuator). The mechanical and fluidic analysis are done by finite element method. The designed structure is normally closed microvalve using buckling effect, which is consist of three separate structures; a valve seat die, an actuator die and a small piezoelectric actuator. The flow rate of the fabricated MCA valve was 0-8.13 ml/min at the applied pressure of 0-50 kPa. Maximum non-linearity was 2.24 % FS at a duty cycle of 50 %. The maximum pressure was 230 kPa and the leak rate was $3.03{\times}10^{-8}\;Pa{\cdot}m^{3}/cm^{2}$ at a supply voltage of 100 V.

A Blocker Design Using a Low Pass Filter (저역 통과 필터를 사용한 예비가공형 설계)

  • 오수익;윤성만;박동진;오진용
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.10a
    • /
    • pp.118-132
    • /
    • 1994
  • This paper investigates a new method to design blocker geometry in rib-web type closed die forging. By examining various forging and blocker geometries, it was found that blocker geometry can be generated by eliminating high frequency mode from finisher geometry. In order to formalize the procedure, low pass filters, which can convert finisher to blocker geometry, are proposed. Also discrete Fourier transform is used for computational efficiency. The blocker geometry designed by the present method are compared with the one by an experienced designer. The blocker geometries are also validated by using FEM simulation. Present results shows that the frequency approach may offer a promising method to design blocker automatically.

  • PDF

A Study on Preform Design in Plane-Strain Forging (평면변형 단조에서의 예비성형체 설계에 관한 연구)

  • Lee, J.H.;Kang, K.;Bae, C.E.
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.5
    • /
    • pp.678-685
    • /
    • 1999
  • A UBET program is developed for determining flash the optimum sizes of preform and initial billet in plane-strain closed-die forging. The program consists of forward and backward tracing processes. In the forward program, flash, die filling and forging load are predicted. In backward tracing process the optimum dimensions of initial billet and preform are determined from the final-shape data based on flash design. Experiments are carried out with pure plasticine billets ar room temperature. The theoretical predictions of forging load and flow pattern are in good agree-ment with the experimental results.

  • PDF

The Process Design for Hot Forging of Bearing Hub Considering Flow Line (단류선을 고려한 베어링 허브의 열간 단조 공정설계)

  • Byun H. S.;No G. Y.;Kim B. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.428-431
    • /
    • 2005
  • This paper describes the process design for hot forging of bearing hub. Forging processes of bearing hub are simulated using the rigid-plastic finite element method. In the process called closed die forging without flash, the design of blocker geometry is of critical importance. Forging processes designs are take advantage of computer aided Process planning and experts. But that is difficult to predict metal flow line. So the preform is designed by the expert, and modified through predict metal flow line by CAE. This paper is to approach preform design considered defect such as metal flow and unfitting etc. at the finisher process.

  • PDF

Measurement Error Modeling for On-Machine Measurement of Sculptured Surfaces

  • Cho, Myeong-Woo;Lee, Se-Hee;Seo, Tae-Il
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.2
    • /
    • pp.73-80
    • /
    • 2001
  • The objective of this research is to develop a measurement error model for sculptured surface in On-Machine Measurement(OMM) process based on a closed-loop configuration. The geometric error model of each axis of a vertical CNC machining center is derived using a 4$\times$4 homogeneous transformation matrix. The ideal locations of a touch-type probe for the sculptured surface measurement are calculated from the parametric surface representation and X-, Y- directional geometric errors of the machine. Also the actual coordinates of the probe are calculated by considering the pre-travel variation of a probe and Z-directional geometric errors. Then, the step-by-sep measurement error analysis method is suggested based on a closed-loop configuration of the machining center including workpiece and probe errors. The simulation study shows the simplicity and effectiveness of the proposed error modeling strategy.

  • PDF

A study on the drawing device and curing mold in CFRP rectangular pipe pultrusion process using a closed impregnation method (밀폐형 함침법을 이용한 CFRP 사각 파이프 인발성형에서 인발장치 및 경화금형에 관한 연구)

  • Kang, Byung-Soo;Yoo, Hyeong-Min
    • Design & Manufacturing
    • /
    • v.16 no.2
    • /
    • pp.60-65
    • /
    • 2022
  • In the pultrusion process for the CFRP (Carbon fiber reinforced plastic) rectangular pipe, the drawing device is eseential which can continuously produces products and draws the carbon fiber tow. In addition, since the degree of cure changes depending on the temperature and the temperature ditribution of the curing mold changes depending on the pultrusion speed, the temperature distribution of the curing mold under certain conditions must be studied before processing. In this study, in the pultrusion process using a closed impregnation method, which has several advantages compared to the general pultrusion process using a open bath impregnation method, the drawing force required to pull the carbon fiber tows and the temperature distribution of the curing mold was analyzed to design the drawing device and the curing mold efficiently.

Finite Element Simulation of Hot forging of Special Purpose Large Crankshafts (대형 크랭크샤프트 단조 공정의 컴퓨터 시뮬레이션)

  • Park, J.H.;Lee, M.C.;Park, T.H.;Cho, B.J.;Joun, M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.297-300
    • /
    • 2008
  • In this paper, a simple and computationally efficient approach to non-isothermal three-dimensional analysis of hot forging processes is presented based on rigid-thermoviscoplastic finite element method. In the approach, the temperatures of dies are considered to be constant. Two hot forging processes of large crank shafts ranging from 800 to 1000 kg are simulated using the simple approach.

  • PDF

Precision Cold Forging of Spur Gear Using the Alloy Steel (합금강을 이용한 스퍼기어의 정밀 냉간 단조)

  • Choi, J.C.;Choi, Y.
    • Transactions of Materials Processing
    • /
    • v.6 no.6
    • /
    • pp.500-507
    • /
    • 1997
  • The conventional closed-die forgings had been applied to the forging of spur gears. But the forgings require high forging-pressure. In this paper, new precision forging technology have been developed. The developed technology is two steps forging process. Good shaped products are forged successfully with lower forging-pressure than those of conventional forging. The accuracy of the forged spur gear obtained by new precision forging technology is set nearly equal to that of cut spur gear of fourth and fifth class in Korean industrial standard.

  • PDF