• Title/Summary/Keyword: Close mold

Search Result 42, Processing Time 0.019 seconds

Investigation the part shrinkage in injection molding for glass fiber reinforced thermoplastics (유리섬유가 첨가된 수지에서 사출성형품의 성형수축에 관한 연구)

  • Mo Jung-Hyuk;Lyu Min-Young
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.159-165
    • /
    • 2004
  • The shrinkages of injection molded parts are different in molding operational conditions and mold design. It also differs from resins. The shrinkages of injection molded parts for PBT (polybutylene terephthalate), PC (polycarbonate),and glass reinforced PBT and PC have been studied for various operational conditions of injection molding. The part shrinkage of crystalline polymer, PBT was higher than that of amorphous polymer, PC by about two times. The part shrinkages of both polymers decreased as glass fiber content increases. Higher Injection temperature and lower injection pressure resulted in a higher shrinkage in both PBT and PC resins. As mold temperature increases the part shrinkage of PC decreased. However, the part shrinkage of PBT increased as mold temperature increases. The part shrinkage of both PBT and PC resins decreased as gate size increases since the pressure delivery is mush easier for a larger gate size. The part shrinkage of flow direction was less than that of the perpendicular direction to the flow for both pure and glass fiber reinforced resins. The part shrinkage at the position close to the gate was less than that of the position far from the gate.

  • PDF

Investigation of the Part Shrinkage in Injection Molding for Class Fiber Reinforced Thermoplastics (유리섬유가 첨가된 수지에서 사출성형품의 성형수축에 관한 연구)

  • Mo J.-H.;Lyu M.-Y.
    • Transactions of Materials Processing
    • /
    • v.13 no.6 s.70
    • /
    • pp.515-521
    • /
    • 2004
  • The shrinkages of injection molded parts are different in molding operational conditions and mold design. It also differs from resins. The shrinkages of injection molded parts fur PBT (polybutylene terephthalate), PC (polycarbonate), and glass reinforced PBT and PC have been studied for various operational conditions of injection molding. The part shrinkage of crystalline polymer, PBT was higher than that of amorphous polymer, PC by about two times. The part shrinkages of both polymers decreased as glass fiber content increases. Higher injection temperature and lower injection pressure resulted in a higher shrinkage in both PBT and PC resins. As mold temperature increases the part shrinkage of PC decreased. However, the part shrinkage of PBT increased as mold temperature increases. The part shrinkages of PBT and PC resins decreased as gate size increases since the pressure delivery is mush easier for a larger gate size. The part shrinkage of flow direction was less than that of the perpendicular direction to the flow for both pure and glass fiber reinforced resins. The part shrinkage at the position close to the gate was less than that of the position far from the gate.

Development of Calculation Program for Thermophysical Properties of Synthetic Sand Mold (인공주물사의 열물성치 계산 프로그램 개발)

  • In-Sung Cho;Jeong-Ho Nam;K.D. Saveliyev;V.M. Golod;Hee-Soo Kim
    • Journal of Korea Foundry Society
    • /
    • v.43 no.4
    • /
    • pp.194-200
    • /
    • 2023
  • The heat transfer of the mold in the casting process has been calculated by considering the mold as a uniform isotropic material. Since the mold was not a uniform isotropic material, however, the calculation was performed with approximate values, and in particular, estimated values were used when considering compaction and the amount of added binder. In this study, a calculation algorithm of the thermal properties of the sand mold was developed. An algorithm for calculating the thermal conductivity and specific heat based on a thermal resistance model in the case of mono-dispersed sand grains was also developed and applied to sand molds with various size distributions. The thermal properties of sand were calculated for artificial sand, and relatively close values compared to the experimental values were obtained.

Quantitative Prediction of Gas Evolved by Shell Core in Permanent Mold Casting of Aluminum Alloy (알루미늄합금 중력금형주조용 쉘중자 가스발생량의 정량적 예측)

  • Kim, Ki-Young;Yi, Min-Soo
    • Journal of Korea Foundry Society
    • /
    • v.18 no.5
    • /
    • pp.481-487
    • /
    • 1998
  • Shell sand is widely used to make a complex shape castings due to its good collapsibility. When molten metal is poured into the mold, various gases are generated by the thermal decomposition of binder in the shell core. Casting defects such as blow hole and blister come from these gases. If it is possible to predict the evolution of gas quantitatively, it may provide effective solutions for minimizing the casting defects. To examine the gas evolution by shell core quantitatively, casting experiment and calculation were carried out. Gas pressure and gas volume evolved by shell core were measured in the experiment, and temperature distribution in the shell core was obtained by heat transfer analysis. From the result above, prediction on the gas volume evolved during pouring was tried. As forming pressure of the shell core increased and forming temperature decreased, the gas evolution increased. There was a close relationship between the calculated gas volume evolved and the measured one.

  • PDF

Shape Control of Automotive Flexible Plate in Press Quenching (프레스 퀜칭 공정에 의한 자동차 Flexible Plate의 형상 제어 연구)

  • Park, I.H.;Jeong, W.C.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.21 no.4
    • /
    • pp.189-198
    • /
    • 2008
  • The production of automotive chassis parts requiring both high hardness and good shape-holdability is better realized by using press quenching technology, comprising the austenitizaton and the subsequent press quenching in a specially designed stamping tool. The effect of press quenching mold shape on the hardness distribution, bending height, and degree of planeness of automotive flexible plate during press quenching and tempering has been investigated. The preferable shape of the projections of punch and die in contact with the flexible plate was close to oval to improve the flow of cooling oil, leading to the higher hardness. The press quenching mold with three separate parts was more effective to control the dimensional change due to thermal deformation during press quenching. Some decrease in the bending height during tempering may be related to some recovery of the residual stress at $400^{\circ}C$.

Network traffic prediction model based on linear and nonlinear model combination

  • Lian Lian
    • ETRI Journal
    • /
    • v.46 no.3
    • /
    • pp.461-472
    • /
    • 2024
  • We propose a network traffic prediction model based on linear and nonlinear model combination. Network traffic is modeled by an autoregressive moving average model, and the error between the measured and predicted network traffic values is obtained. Then, an echo state network is used to fit the prediction error with nonlinear components. In addition, an improved slime mold algorithm is proposed for reservoir parameter optimization of the echo state network, further improving the regression performance. The predictions of the linear (autoregressive moving average) and nonlinear (echo state network) models are added to obtain the final prediction. Compared with other prediction models, test results on two network traffic datasets from mobile and fixed networks show that the proposed prediction model has a smaller error and difference measures. In addition, the coefficient of determination and index of agreement is close to 1, indicating a better data fitting performance. Although the proposed prediction model has a slight increase in time complexity for training and prediction compared with some models, it shows practical applicability.

Moisture Absorption and Strengths of Composite Skins cured on the Close Heated Mold (폐쇄형 가열 금형에서 경화된 복합재 외피의 수분흡수 및 강도특성)

  • Kyung-Su Kim;Hyeon-Seok Choe;Byeong-Su Kwak;Jin-Hwe Kweon
    • Composites Research
    • /
    • v.37 no.2
    • /
    • pp.126-131
    • /
    • 2024
  • The moisture absorption rate and structural strength changes of oven-cured composite skin based on closed molds were studied. Moisture absorption was performed on specimens with and without filler applied. The specimens were exposed to moisture for up to 231 days. Tensile and compression tests were conducted with and without filler application. As a result of the test, the moisture absorption rates of the tensile and compressive specimens without filler were 2.4 and 0.3% higher, respectively, than those with the filler applied. The tensile and compressive strengths of the specimen without filler applied were average 305 MPa and 139 MPa, respectively, and the tensile and compressive strengths of the specimen with filler applied were 313 MPa and 166 MPa, respectively, appeared high.

Estimation of Sculptured Surface NC Machining Time (자유곡면 NC 절삭가공시간 예측)

  • 허은영;김보현;김동원
    • Korean Journal of Computational Design and Engineering
    • /
    • v.8 no.4
    • /
    • pp.254-261
    • /
    • 2003
  • In mold and die shops, NC machining process mainly affects the quality of the machined surface and the manufacturing time of molds and dies. The estimation of NC machining time is a prerequisite to measure the machining productivity and to generate a process schedule, which generally includes the process sequence and the completion time of each process. It is required to take into account dynamic characteristics in the estimation, such as the ac/deceleration of NC machine controllers. Intensive observations at start and end points of NC blocks show that a minimum feedrate, a key variable in a machining time model, has a close relation to a block distance, an angle between blocks, and a command feedrate. Thus, this study addresses regression models for the minimum feedrate estimation on short and long NC blocks considering these parameters. Furthermore, machining time estimation models by the four types of feedrate behaviors are suggested based on the estimated minimum feedrate. To show the validity of the proposed machining time model, the study compares the estimated with the actual machining time in the sculptured surface machining of several mold dies.

Studies on the industrialization of the Korean KockJa.(I) - It's Isolation and physiological characteristics of Mold from Kock Ja. (한국국자(Kock Ja)의 발효생산력에 관한연구 (제 1보) - 국자중 함유사상균의 분리와 기성상)

  • 이두영
    • Korean Journal of Microbiology
    • /
    • v.5 no.2
    • /
    • pp.93-96
    • /
    • 1967
  • Especially, we mainly dealt on the isolation of mold in the sample of the Korean products, Kock Ja. The kinds of the isolated strain are such as these, Rhizopus, Mucor, Aspergillus oryzae sp., aspergillus niger sp., Penicillum and Flungi Imperfecti. The action of the starch saccharification of isolated strain and the order of liquefying action are follows: The saccharification power was R-l>R-2>M-2> Kock Ja>M-1>O-2>N-1>O-4 The liquefying power was R-1, R-2>0-2>0-4>M-2, Kock Ja>M-1>N-1 We compared the pH's saccharification curve of each kind of strain with Kock Ja. The most suitable pH value of R-1, R-2 was the closest to pH 4. 0, close value with Kock Ja. The Rhizopus species on the saccharification action of each kind of strain in regard to raw wheat starch was stronger than other kinds of strain. We think that to generalize the above result, the Rhizopus species consists of an important strain of this Kock Ja, and is an important factor for the saccharification action of Kock Ja and the existence of Mucor species as well.

  • PDF

Research on Ultra-precision Grinding Work of Silicon Carbide (실리콘 카바이드의 초정밀 연삭 가공에 관한 연구)

  • Park, Soon-Sub;Won, Jong-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.9
    • /
    • pp.58-63
    • /
    • 2009
  • Silicon carbide (SiC) has been used for many engineering applications because of their high strength at high temperatures and high resistances to chemical degradation. SiC is very useful especially for a glass lens mold whose components demanded to the machining with good surface finish and low surface damage. The performance and reliability of optical components are strongly influenced by the surface damage of SiC during grinding process. Therefore, the severe process condition optimization shall be necessary for the highly qualified SiC glass lens mold. Usually the major form of damage in grinding of SiC is a crack occurs at surface and subsurface. The energy introduced in the layers close to the surface leads to the formation of these cracks. The experimental studies have been carried out to get optimum conditions for grinding of silicon carbide. To get the required qualified surface finish in grinding of SiC, the selection of type of the wheel is also important. Grinding processes of sintered SiC work-pieces is carried out with varying wheel type, depth of cut and feed using diamond wheel. The machining result of the surface roughness and the number of flaws, have been analyzed by use of surface profilers and SEM.