• Title/Summary/Keyword: Clone cells

Search Result 296, Processing Time 0.043 seconds

Plant genome analysis using flow cytometry

  • Lee Jai-Heon;Kim Kee-Young;Chung Dae-Soo;Chung Won Bok;Kwon Oh-Chang
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 1999.05a
    • /
    • pp.162-163
    • /
    • 1999
  • The goal of this research was (1) to describe the conditions and parameters required for the cell cycle synchronization and the accumulation of large number of metaphase cells in maize and other cereal root tips, (2) to isolate intact metaphase chromosomes from root tips suitable for characterization by flow cytometry, and (3) to construct chromosome-specific libraries from maize. Plant metaphase chromosomes have been successfully synchronized and isolated from many cereal root-tips. DNA synthesis inhibitor (hydroxyurea) was used to synchronize cell cycle, follwed by treatement with trifluralin to accumulate metaphase chromosomes. Maize flow karyotypes show substantial variation among inbred lines. thish variation should be sueful in isolating individual chromosome types. In addition, flow cytometry is a useful method to measure DNA content of individual chromosomes in a genotyps, and to detect chromosomal variations. Individual chromosome peaks have been sorted from the maize hybrid B73/Mol7. Libraries were generated form the DOP-PCR amplification product from each peak. To date, we have analyzed clones from a library constructed from the maize chromosome 1 peak. Hybridization of labeled genomic DNA to clone inserts indicated that $24\%,\;18\%,\;and\;58\%$ of the clones were highly repetitive, medium repetitive, and low copy, respectively. Fifty percent of putative low cpoy clones showed single bands on inbred screening, blots, and the remaining $50\%$ were low copy repeats. Single copy clones showing polymorphism will be mapped using recombinant inbred mapping populations. Repetitive clones are being characterized by Southern blot analysis, and will be screened by in situ hybridization for their potential utility as chromosome specific markers.

  • PDF

Immunochemical Studies of Starfish Gangliosides: Production of Monoclonal Antibody against AG-2, the Major Ganglioside of Starfish Acanthaster planci, and Detecting Its Distribution in Tissues by TLC Immunostaining

  • Miyamoto, Tomofumi;Yamamoto, Atsushi;Sakai, Maki;Tanaka, Hiroyuki;Shoyama, Yukihiro;Higuchi, Ryuichi
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.1 no.4
    • /
    • pp.298-304
    • /
    • 2006
  • In this study, we establish a thin-layer chromatography (TLC) immunostaining method for detecting starfish gangliosides. A new monoclonal antibody (MAb) against AG-2, the major gangliosides molecular species of Acanthaster planci, was produced by fusing hybridoma with splenocytes immunized to liposomal AG-2. BALB/c male mice were injected with liposomal AG-2 antigen, and immunized. Their splenocytos were isolated and fused with hypoxanthine-aminopterine-thimidine (HAT)-sensitive mouse myeloma cells. Hybridomas producing MAb reactive to AG-2 were cloned using the limited dilution method. Established hybridomas were cultured in eRDF medium. Crude MAb produced from clone 8D4 was purified with a magnesium pyrophosphate column. Enzyme immunoassay and TLC immunostaining of AG-2 were performed using the purified MAb. Structurally related gangliosides did not cross-react with anti-AG-2 antibodies. The detection limit of TLC immunostaining was 50 ng of AG-2. The newly established immunostaining method was further developed for detecting AG-2 distribution and qualitative analysis in tissues and/or organs. Our results show that the majority of AG-2 is present in the stomach of male A. planci, while AG-2 is distributed not only in the stomach but also in the the pyloric caeca of female A. planci.

  • PDF

Identification of Genes Expressed during Conidial Germination of the Pepper Anthracnose Pathogen, Colletotrichum acutatum (고추 탄저병균의 포자 발아 단계 발현 유전자 동정)

  • Kim, Jeong-Hwan;Lee, Jong-Hwan;Choi, Woobong
    • Journal of Life Science
    • /
    • v.23 no.1
    • /
    • pp.8-14
    • /
    • 2013
  • Genes expressed during conidial germination of the pepper anthracnose fungus Colletotrichum acutatum were identified by sequencing the 5' end of unidirectional cDNA clones prepared from the conidial germination stage. A total of 983 expressed sequence tags (ESTs) corresponding to 464 genes, 197 contigs and 267 singletons, were generated. The deduced protein sequences from half of the 464 genes showed significant matches (e value less than 10-5) to proteins in public databases. The genes with known homologs were assigned to known functional categories. The most abundantly expressed genes belonged to those encoding the elongation factor, histone protein, ATP synthease, 14-3-3 protein, and clock controlled protein. A number of genes encoding proteins such as the GTP-binding protein, MAP kinase, transaldolase, and ABC transporter were detected. These genes are thought to be involved in the development of fungal cells. A putative pathogenicity function could be assigned for the genes of ATP citrate lyase, CAP20 and manganese-superoxide dismutase.

Biochemical Analysis of a Cytosolic Small Heat Shock Protein, NtHSP18.3, from Nicotiana tabacum

  • Yu, Ji Hee;Kim, Keun Pill;Park, Soo Min;Hong, Choo Bong
    • Molecules and Cells
    • /
    • v.19 no.3
    • /
    • pp.328-333
    • /
    • 2005
  • Small heat shock proteins (sHSPs) are widely distributed, and their function and diversity of structure have been much studied in the field of molecular chaperones. In plants, which frequently have to cope with hostile environments, sHSPs are much more abundant and diverse than in other forms of life. In response to high temperature stress, sHSPs of more than twenty kinds can make up more than 1% of soluble plant proteins. We isolated a genomic clone, NtHSP18.3, from Nicotiana tabacum that encodes the complete open reading frame of a cytosolic class I small heat shock protein. To investigate the function of NtHSP18.3 in vitro, it was overproduced in Escherichia coli and purified. The purified NtHSP18.3 had typical molecular chaperone activity as it protected citrate synthase and luciferase from high temperature-induced aggregation. When E. coli celluar proteins were incubated with NtHSP18.3, a large proportion of the proteins remained soluble at temperatures as high as $70^{\circ}C$. Native gel analysis suggested that NtHSP18.3 is a dodecameric oligomer as the form present and showing molecular chaperone activity at the condition tested. Binding of bis-ANS to the oligomers of NtHSP18.3 indicated that exposure of their hydrophobic surfaces increased as the temperature was raised. Taken together, our data suggested that NtHSP18.3 is a molecular chaperone that functions as a dodecameric complex and possibly in a temperature-induced manner.

Structural and Functional Characterization of CRAMP-18 Derived from a Cathelicidin-Related Antimicrobial Peptide CRAMP

  • Park, Kyong-Soo;Shin, Song-Yub;Hahm, Kyung-Soo;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.10
    • /
    • pp.1478-1484
    • /
    • 2003
  • CRAMP was identified from a cDNA clone derived from a mouse femoral marrow cells as a member of cathelicidin-derived antimicrobial peptide. Tertiary structure of CRAMP in TFE/$H_2O$ (1 : 1, v/v) solution has been determined by NMR spectroscopy previously and consists of two amphipathic $\alpha-helices$ from Leu4 to Lys10 and from Gly16 to Leu33. These two helices are connected by a flexible region from Gly11 to Gly16. Analysis of series of fragments composed of various portion of CRAMP revealed that an 18-residue fragment with the sequence from Gly16 to Leu33 (CRAMP-18) was found to retain antibacterial activity without cytotoxicity. The effects of two Phe residues at positions 14 and 15 of CRAMP-18 on structure, antibacterial activity, and interaction with lipid membranes were investigated by $Phe^{14,15}$ ${\rightarrow}$ Ala substitution (CRAMP-18-A) in the present study. Substitution of Phe with Ala in CRAMP-18 caused a significant reduction on antibacterial and membrane-disrupting activities. Tertiary structures of CRAMP-18 in 50% TFE/$H_2O$ (1 : 1, v : v) solution shows amphipathic ${\alpha}$-helix, from $Glu^2{\;}to{\;}Leu^{18}$, while CRAMP-18-A has relatively short amphipathic ${\alpha}$-helix from $Leu^4{\;}to{\;}Ala^{15}$. These results suggest that the hydrophobic property of $Phe^{14}{\;}and{\;}Phe^15$ in CRAMP-18 is essential for its antibacterial activity, ${\alpha}$-helical structure, and interactions with phospholipid membranes.

The SL1 Stem-Loop Structure at the 5′-End of Potato virus X RNA Is Required for Efficient Binding to Host Proteins and forViral Infectivity

  • Kwon, Sun-Jung;Kim, Kook-Hyung
    • Molecules and Cells
    • /
    • v.21 no.1
    • /
    • pp.63-75
    • /
    • 2006
  • The 5′-region of Potato virus X (PVX) RNA, which contains an AC-rich, single-stranded region and stem-loop structure 1 (SL1), affects RNA replication and assembly. Using Systemic Evolution of Ligands by EXponential enrichment (SELEX) and the electrophoretic mobility shift assay, we demonstrate that SL1 interacts specifically with tobacco protoplast protein extracts (S100). The 36 nucleotides that correspond to the top region of SL1, which comprises stem C, loop C, stem D, and the tetra loop (TL), were randomized and bound to the S100. Remarkably, the wild-type (wt) sequence was selected in the second round, and the number of wt sequences increased as selection proceeded. All of the selected clones from the fifth round contained the wt sequence. Secondary structure predictions (mFOLD) of the recovered sequences revealed relatively stable stem-loop structures that resembled SL1, although the nucleotide sequences therein were different. Moreover, many of the clones selected in the fourth round conserved the TL and C-C mismatch, which suggests the importance of these elements in host protein binding. The SELEX clone that closely resembled the wt SL1 structure with the TL and C-C mismatch was able to replicate and cause systemic symptoms in plants, while most of the other winners replicated poorly only on inoculated leaves. The RNA replication level on protoplasts was also similarly affected. Taken together, these results indicate that the SL1 of PVX interacts with host protein(s) that play important roles related to virus replication.

The Role of Rice Vacuolar Invertase2 in Seed Size Control

  • Lee, Dae-Woo;Lee, Sang-Kyu;Rahman, Md Mizanor;Kim, Yu-Jin;Zhang, Dabing;Jeon, Jong-Seong
    • Molecules and Cells
    • /
    • v.42 no.10
    • /
    • pp.711-720
    • /
    • 2019
  • Sink strength optimizes sucrose import, which is fundamental to support developing seed grains and increase crop yields, including those of rice (Oryza sativa). In this regard, little is known about the function of vacuolar invertase (VIN) in controlling sink strength and thereby seed size. Here, in rice we analyzed mutants of two VINs, OsVIN1 and OsVIN2, to examine their role during seed development. In a phenotypic analysis of the T-DNA insertion mutants, only the OsVIN2 mutant osvin2-1 exhibited reduced seed size and grain weight. Scanning electron microscopy analysis revealed that the small seed grains of osvin2-1 can be attributed to a reduction in spikelet size. A significant decrease in VIN activity and hexose level in the osvin2-1 spikelets interfered with spikelet growth. In addition, significant reduction in starch and increase in sucrose, which are characteristic features of reduced turnover and flux of sucrose due to impaired sink strength, were evident in the pre-storage stage of osvin2-1 developing grains. In situ hybridization analysis found that expression of OsVIN2 was predominant in the endocarp of developing grains. A genetically complemented line with a native genomic clone of OsVIN2 rescued reduced VIN activity and seed size. Two additional mutants, osvin2-2 and osvin2-3 generated by the CRISPR/Cas9 method, exhibited phenotypes similar to those of osvin2-1 in spikelet and seed size, VIN activity, and sugar metabolites. These results clearly demonstrate an important role of OsVIN2 as sink strength modulator that is critical for the maintenance of sucrose flux into developing seed grains.

Growth Response in Culture Condtions for a Clone of Marine Diatom Melosira nummuloides Isolated from Jeju Coastal Waters (제주 연안해역에서 분리한 규조류 Melosira nummuloides의 성장 특성)

  • Ga-Young Kim;Keon-Gang Jang;Gyung-Min Go;Hyung-Seop Kim
    • Ocean and Polar Research
    • /
    • v.45 no.4
    • /
    • pp.201-209
    • /
    • 2023
  • Melosira nummuloides (KNU-HAPCC-101), which is a biological resource for fucoxanthin extraction, was separated from single cells, and optimal growth conditions were derived according to temperature, salinity, light intensity, light emitting diode, N:P ratio of culture medium, and dilution ratio of culture medium. These parameters were assessed to ascertain the best culture conditions for the most economical and efficient indoor mass production. The specific growth rate was the highest at 25℃ in temperature, but there was no significant difference between 15℃ and 20℃. M. nummuloides died at 0 psu in salinity, and the specific growth rate was the highest at 30 psu in respect to salinity. The light intensity was similar in all experimental groups except for 5 µmol photons m-2 s-2. The maximum biomass and specific growth rate in the light-emitting diode experiment were revealed at the red wavelength, but the concentration of chlorophyll-a was the lowest at the red wavelength whereas the white wavelength produced the highest chlorophyll-a concentration. In the experiment according to the ratio of nitrogen and phosphorus (N:P) based on the f/2 culture medium, the growth rate was significantly higher in the 15:1 to 50:1 ratio range. The growth rate according to the dilution concentration of the f/2 culture medium was the highest in the f/2 culture medium, but did not show a significant difference from the f/4 culture medium. M. nummuloides can be mass-cultured under conditions of a temperature of 15-25℃, a salinity of 15-35 psu, light intensity of 25-150 µmol photons m-2 s-2, and f/4 media concentration level with an N:P ratio 15:1 or more. Based on the data of this study, it is expected that fucoxanthin can be produced in a highly efficient manner through the development of a mass culture system.

Genomic Organization and Promoter Characterization of the Murine Glial Cell-derived Neurotrophic Factor Inducible Transcription Factor (mGIF) Gene (생쥐 신경교세포 유래 신경영양인자 유도성 전사인자 (mGIF) 유전자의 유전체 구조 및 프로모터 특성 분석)

  • Kim, Ok-Soo;Kim, Yong-Man;Kim, Nam-Young;Lee, Eo-Jin;Jang, Min-Kyung;Lee, Dong-Geun;Lee, Sang-Hyeon
    • Journal of Life Science
    • /
    • v.17 no.2 s.82
    • /
    • pp.167-173
    • /
    • 2007
  • To study the transcriptional mechanisms by which expression of the murine glial cell-derived neurotrophic factor inducible transcription factor (mGIF) gene is regulated, a murine genomic clone was iso-lated using a mGIF cDNA as probe. A 13-kb genomic fragment, which comprises 4-kb upstream of the transcription initiation site was sequenced. The promoter region lacks a TATA box and CAAT box, is rich in G+C content, and has multiple putative binding sites for the transcription factor Spl. The mGIF gene also has consensus sequences for AP2 binding sites. The transcriptional activity of five deletion mutants of a 2.1-kb fragment was analyzed by modulating transcription of the heterologous luciferase gene in the promoterless plasmid pGL2-Basic. All mutants showed significant transcriptional activity in the murine neuroblastoma cell line NB41A3. Transient expression assays suggested the presence of a positive regulator between -213 and -129 while a negative regulator was found in the region between -806 and -214. Relatively strong transcriptional activity was observed in neuronal NB41A3, glial C6 cells and hepatic HepG2, but very weak activity in skeletal muscle C2C12 cells. These findings confirm the tissue-specific activity of the mGIF promoter and suggest that this gene shares structural and functional similarities with the dopamine receptor genes that it regulates.

Skin-Whitening and UV-Protective Effects of Angelica gigas Nakai Extracts on Ultra High Pressure Extraction Process (초고압 추출 공정에 의한 당귀 추출물의 미백 및 자외선 차단 효과)

  • Kim, Cheol-Hee;Kwon, Min-Chul;Han, Jae-Gun;Na, Chun-Su;Kwak, Hyeong-Geun;Choi, Geun-Pyo;Park, Uk-Yeon;Lee, Hyeon-Yong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.16 no.4
    • /
    • pp.255-260
    • /
    • 2008
  • This study was performed to investigate the enhancement of UV-protection activities and skin-whitening effects from Angelica gigas Nakai extracts on ultra high pressure extraction process. Extraction at $60^{\circ}C$ treated by ultra high pressure for 15 minute and associated with ultrasofication (HPE15) was showed more than double yield, compare conventional extraction, as 12.24% (w/w) from A. gigas. Extracts of HPE15 reduced expression of MMP-1 on UV-irradiated CCD-986sk cells as 122.2% and revealed high inhibitory potency on tyrosinase as 69.4% by adding samples. Extracts of HPE15 from A. gigas showed strong inhibition effect on melanin production test by Clone M-3 cells as 82.4% by adding extracts. From the preliminary observations, we considered that the extracts from A. gigas could be potent natural materials for skin-whitening agent, and could be used as a potential anti-aging agent for the photo-damaged skin.