• 제목/요약/키워드: Clock gene

검색결과 45건 처리시간 0.017초

Abrogation of the Circadian Nuclear Receptor REV-ERBα Exacerbates 6-Hydroxydopamine-Induced Dopaminergic Neurodegeneration

  • Kim, Jeongah;Jang, Sangwon;Choi, Mijung;Chung, Sooyoung;Choe, Youngshik;Choe, Han Kyoung;Son, Gi Hoon;Rhee, Kunsoo;Kim, Kyungjin
    • Molecules and Cells
    • /
    • 제41권8호
    • /
    • pp.742-752
    • /
    • 2018
  • Parkinson's disease (PD) is a neurodegenerative disease characterized by progressive degeneration of dopaminergic (DAergic) neurons, particularly in the substantia nigra (SN). Although circadian dysfunction has been suggested as one of the pathophysiological risk factors for PD, the exact molecular link between the circadian clock and PD remains largely unclear. We have recently demonstrated that $REV-ERB{\alpha}$, a circadian nuclear receptor, serves as a key molecular link between the circadian and DAergic systems. It competitively cooperates with NURR1, another nuclear receptor required for the optimal development and function of DA neurons, to control DAergic gene transcription. Considering our previous findings, we hypothesize that $REV-ERB{\alpha}$ may have a role in the onset and/or progression of PD. In the present study, we therefore aimed to elucidate whether genetic abrogation of $REV-ERB{\alpha}$ affects PD-related phenotypes in a mouse model of PD produced by a unilateral injection of 6-hydroxydopamine (6-OHDA) into the dorsal striatum. $REV-ERB{\alpha}$ deficiency significantly exacerbated 6-OHDA-induced motor deficits as well as DAergic neuronal loss in the vertebral midbrain including the SN and the ventral tegmental area. The exacerbated DAergic degeneration likely involves neuroinflammation-mediated neurotoxicity. The $REV-erb{\alpha}$ knockout mice showed prolonged microglial activation in the SN along with the over-production of interleukin $1{\beta}$, a pro-inflammatory cytokine, in response to 6-OHDA. In conclusion, the present study demonstrates for the first time that genetic abrogation of $REV-ERB{\alpha}$ can increase vulnerability of DAergic neurons to neurotoxic insults, such as 6-OHDA, thereby implying that its normal function may be beneficial for maintaining DAergic neuron populations during PD progression.

The Influence of Circadian Gene Per2 on Cell Damaged by Ultraviolet C

  • Liu, Yanyou;Wang, Yuhui;Jiang, Zhou;Xiao, Jing;Wang, Zhengrong
    • Biomolecules & Therapeutics
    • /
    • 제19권3호
    • /
    • pp.308-314
    • /
    • 2011
  • It has been shown that circadian genes not only play an important role on circadian rhythms, but also participate in other physiological and pathological activities, such as drug dependence, cancer development and radiation injury. The Per2, an indispensable component of the circadian clock, not only modulates circadian oscillations, but also regulates organic function. In the present study, we applied mPER2-upregulated NIH3T3 cells to reveal the relationship of mPer2 and the cells damaged by ultraviolet C (UVC). NIH3T3 cells at the peak of the expression of mPer2 induced by phorbol 12-myristate 13-acetate (PMA) demonstrated little damage by UVC evaluated by MTT assay, cell growth curves and cell colony-forming assay, compared with that at the nadir of the expression of mPer2. Overexpression of mPER2, accompanied p53 upregulated, also demonstrated protective effect on NIH3T3 cells damaged by UVC. These results suggest that mPer2 plays a protective effect on cells damaged by UVC, whose mechanism may be involved in upregulated p53.

Antioxidative and Circadian Rhythm Regulation Effect of Quercus gilva Extract

  • HUH, Jin-Sung;LEE, Sora;KIM, Dong-Soo;CHOI, Myung Suk;CHOI, Hyunmo;LEE, Kyung-Ha
    • Journal of the Korean Wood Science and Technology
    • /
    • 제50권5호
    • /
    • pp.338-352
    • /
    • 2022
  • Herein, water and ethanol extracts were obtained from the leaves, branches, kernels, and pericarp of Quercus gilva and subsequently analyzed for antioxidant activity and circadian rhythm regulation effects. Candidate components that may affect circadian rhythm and antioxidant activity were investigated to discover potential functional materials. Antioxidant activity was analyzed via 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging activity assays, showing that the hot water extract exhibited higher activity than that of the ethanol extract. In particular, the branch extract showed high antioxidant activity. By measuring total contents of polyphenols, flavonoids, and tannins, the hot water branch extract showed the highest concentrations, highlighting their significant contribution to the antioxidant activity. Examination of the circadian rhythm regulation of each extract showed that the ethanol extract exhibited greater impacts on the circadian rhythm amplitude compared to the water extract. The branch ethanol extract induced circadian rhythm amplitude changes via clock gene Bmal1 expression regulation. Determination of 12 phenolic compound concentrations showed that the branch ethanol extract contained many phenolic compounds, including catechin. This suggests that these com- pounds affected circadian rhythm regulation. In conclusion, the hot water branch extract has potential as an natural antioxidant material, while the corresponding ethanol extract has potential as a functional material for regulating circadian rhythm.

배추 속 작물의 개화형 판별 마커 시스템 개발 (Development of a marker system to discern the flowering type in Brassica rapa crops)

  • 김진아;김정선;홍준기;이연희;이수인;정미정
    • Journal of Plant Biotechnology
    • /
    • 제44권4호
    • /
    • pp.438-447
    • /
    • 2017
  • 개화는 배추종 작물의 생산성과 연관된 중요 발달 특성 중 하나이다. 이식 후, 갑작스러운 저온에 노출되어 때이른 개화를 하게 되면 수확되는 생산물의 양과 질이 떨어지게 된다. 따라서, 개화조절 메커니즘을 이해하는 것은 배추 종 작물의 농업적 생산성을 향상시키는데 도움을 줄 것이다. 춘화는 배추과 작물에서 일반적으로 알려져 있는 개화를 유도하는 중요한 요소이다. 그러나 옐로우 사순이나 코마수나와 같은 배추 아종은 춘화처리 없이도 개화한다. 1일을 주기로 하여 생물의 생리기작을 조절하는 생체시계 유전자는 일장감응형의 개화 조절에 중요한 역할을 하지만 춘화처리를 통해 개화를 유도하는 기작과도 연관되어 있다. 본 논문에서는 22개의 배추 아종을 개화에 춘화처리가 필요한 춘화형과 춘화처리 없이도 개화하는 비춘화형으로 나누어 보존된 생체시계 유전자, BrPRR1 군의 염기서열 분석을 수행하였다. 그 중 BrPRR1b 유전자의 결손 영역으로 춘화형과 비춘화형 두 그룹을 구분할 수 있었다. 이 서열변이를 증폭할 수 있는 PCR 프라이머를 디자인하여 비춘화형 배추 아종에서는 451 bp의 긴밴드를, 춘화형 배추에서는 422 bp의 작은 크기의 밴드를 증폭할 수 있었다. 이 프라이머 세트는 43개 배추 아종과 4개의 배추속 작물, 브로콜리, 양배추, 갓, 그리고 유채의 개화형을 구분하는데 적용되었다. 각 작물의 PCR 결과와 개화시기에 대한 정보를 통하여 프라이머 세트가 개화형을 판별할 수 있는 마커로 이용될 수 있음이 확인되었다. 이 마커시스템은 배추 종 작물 육종에 유묘 단계에서 개화형을 판단하는데 이용할 수 을 것이다. 또한 이 결과들은 생체시계 유전자가 배추 종 작물의 개화를 조절하는 좋은 전략이 될 수 있음을 보여주었다.

Isolation of CONSTANS as a TGA4/OBF4 Interacting Protein

  • Song, Young Hun;Song, Na Young;Shin, Su Young;Kim, Hye Jin;Yun, Dae-Jin;Lim, Chae Oh;Lee, Sang Yeol;Kang, Kyu Young;Hong, Jong Chan
    • Molecules and Cells
    • /
    • 제25권4호
    • /
    • pp.559-565
    • /
    • 2008
  • Members of the TGA family of basic domain/leucine zipper transcription factors regulate defense genes through physical interaction with NON-EXPRESSOR OF PR1 (NPR1). Of the seven TGA family members, TGA4/octopine synthase (ocs)-element-binding factor 4 (OBF4) is the least understood. Here we present evidence for a novel function of OBF4 as a regulator of flowering. We identified CONSTANS (CO), a positive regulator of floral induction, as an OBF4-interacting protein, in a yeast two-hybrid library screen. OBF4 interacts with the B-box region of CO. The abundance of OBF4 mRNA cycles with a 24 h rhythm under both long-day (LD) and short-day (SD) conditions, with significantly higher levels during the night than during the day. Electrophoretic mobility shift assays revealed that OBF4 binds to the promoter of the FLOWERING LOCUS T (FT) gene, a direct target of CO. We also found that, like CO and FT, an OBF4:GUS construct was prominently expressed in the vascular tissues of leaf, indicating that OBF4 can regulate FT expression through the formation of a protein complex with CO. Taken together, our results suggest that OBF4 may act as a link between defense responses and flowering.