Prediction is a significant topic in clinical research. The development and validation of a prediction model has been increasingly published in clinical research. In this review, we investigated analytical methods and validation schemes for a clinical prediction model used in digestive cancer research. Deep learning and logistic regression, with split-sample validation as an internal or external validation, were the most commonly used methods. Furthermore, we briefly introduced and summarized the advantages and disadvantages of each method. Finally, we discussed several points to consider when conducting prediction model studies.
Validation specifies and coordinates all relevant activities to ensure compliance with good laboratory practices (GLP) according to suitable international standards. This includes validation activities of past, present and future for the best possible actions to ensure the integrity of non-clinical laboratory data. Recently, validation has become increasingly important, not only in good manufacturing practice (GMP) institutions but also in GLP facilities. In accordance with the guideline for GLP regulations, all equipments used to generate, measure, or assess data should undergo validation to ensure that this equipment is of appropriate design and capacity and that it will consistently function as intended. Therefore, the implantation of validation processes is considered to be an essential step in a global institution. This review describes the procedures and documentations required for validation of GLP. It introduces basic elements such as the validation master plan, risk assessment, gap analysis, design qualification, installation qualification, operational qualification, performance qualification, calibration, traceability, and revalidation.
Heera Yoen;Soo-Yeon Kim;Dae-Won Lee;Han-Byoel Lee;Nariya Cho
Korean Journal of Radiology
/
제24권7호
/
pp.626-639
/
2023
Objective: To investigate the association of clinical, pathologic, and magnetic resonance imaging (MRI) variables with progressive disease (PD) during neoadjuvant chemotherapy (NAC) and distant metastasis-free survival (DMFS) in patients with triple-negative breast cancer (TNBC). Materials and Methods: This single-center retrospective study included 252 women with TNBC who underwent NAC between 2010 and 2019. Clinical, pathologic, and treatment data were collected. Two radiologists analyzed the pre-NAC MRI. After random allocation to the development and validation sets in a 2:1 ratio, we developed models to predict PD and DMFS using logistic regression and Cox proportional hazard regression, respectively, and validated them. Results: Among the 252 patients (age, 48.3 ± 10.7 years; 168 in the development set; 84 in the validation set), PD was occurred in 17 patients and 9 patients in the development and validation sets, respectively. In the clinical-pathologic-MRI model, the metaplastic histology (odds ratio [OR], 8.0; P = 0.032), Ki-67 index (OR, 1.02; P = 0.044), and subcutaneous edema (OR, 30.6; P = 0.004) were independently associated with PD in the development set. The clinical-pathologic-MRI model showed a higher area under the receiver-operating characteristic curve (AUC) than the clinical-pathologic model (AUC: 0.69 vs. 0.54; P = 0.017) for predicting PD in the validation set. Distant metastases occurred in 49 patients and 18 patients in the development and validation sets, respectively. Residual disease in both the breast and lymph nodes (hazard ratio [HR], 6.0; P = 0.005) and the presence of lymphovascular invasion (HR, 3.3; P < 0.001) were independently associated with DMFS. The model consisting of these pathologic variables showed a Harrell's C-index of 0.86 in the validation set. Conclusion: The clinical-pathologic-MRI model, which considered subcutaneous edema observed using MRI, performed better than the clinical-pathologic model for predicting PD. However, MRI did not independently contribute to the prediction of DMFS.
Artificial intelligence (AI) will likely affect various fields of medicine. This article aims to explain the fundamental principles of clinical validation, device approval, and insurance coverage decisions of AI algorithms for medical diagnosis and prediction. Discrimination accuracy of AI algorithms is often evaluated with the Dice similarity coefficient, sensitivity, specificity, and traditional or free-response receiver operating characteristic curves. Calibration accuracy should also be assessed, especially for algorithms that provide probabilities to users. As current AI algorithms have limited generalizability to real-world practice, clinical validation of AI should put it to proper external testing and assisting roles. External testing could adopt diagnostic case-control or diagnostic cohort designs. A diagnostic case-control study evaluates the technical validity/accuracy of AI while the latter tests the clinical validity/accuracy of AI in samples representing target patients in real-world clinical scenarios. Ultimate clinical validation of AI requires evaluations of its impact on patient outcomes, referred to as clinical utility, and for which randomized clinical trials are ideal. Device approval of AI is typically granted with proof of technical validity/accuracy and thus does not intend to directly indicate if AI is beneficial for patient care or if it improves patient outcomes. Neither can it categorically address the issue of limited generalizability of AI. After achieving device approval, it is up to medical professionals to determine if the approved AI algorithms are beneficial for real-world patient care. Insurance coverage decisions generally require a demonstration of clinical utility that the use of AI has improved patient outcomes.
Objective: This study aimed to develop and validate models using radiomics features on a native T1 map from cardiac magnetic resonance (CMR) to predict left ventricular reverse remodeling (LVRR) in patients with nonischemic dilated cardiomyopathy (NIDCM). Materials and Methods: Data from 274 patients with NIDCM who underwent CMR imaging with T1 mapping at Severance Hospital between April 2012 and December 2018 were retrospectively reviewed. Radiomic features were extracted from the native T1 maps. LVRR was determined using echocardiography performed ≥ 180 days after the CMR. The radiomics score was generated using the least absolute shrinkage and selection operator logistic regression models. Clinical, clinical + late gadolinium enhancement (LGE), clinical + radiomics, and clinical + LGE + radiomics models were built using a logistic regression method to predict LVRR. For internal validation of the result, bootstrap validation with 1000 resampling iterations was performed, and the optimism-corrected area under the receiver operating characteristic curve (AUC) with 95% confidence interval (CI) was computed. Model performance was compared using AUC with the DeLong test and bootstrap. Results: Among 274 patients, 123 (44.9%) were classified as LVRR-positive and 151 (55.1%) as LVRR-negative. The optimism-corrected AUC of the radiomics model in internal validation with bootstrapping was 0.753 (95% CI, 0.698-0.813). The clinical + radiomics model revealed a higher optimism-corrected AUC than that of the clinical + LGE model (0.794 vs. 0.716; difference, 0.078 [99% CI, 0.003-0.151]). The clinical + LGE + radiomics model significantly improved the prediction of LVRR compared with the clinical + LGE model (optimism-corrected AUC of 0.811 vs. 0.716; difference, 0.095 [99% CI, 0.022-0.139]). Conclusion: The radiomic characteristics extracted from a non-enhanced T1 map may improve the prediction of LVRR and offer added value over traditional LGE in patients with NIDCM. Additional external validation research is required.
With growing interest in novel digital healthcare devices, such as artificial intelligence (AI) software for medical diagnosis and prediction, and their potential impacts on healthcare, discussions have taken place regarding the regulatory approval, coverage, and clinical implementation of these devices. Despite their potential, 'digital exceptionalism' (i.e., skipping the rigorous clinical validation of such digital tools) is creating significant concerns for patients and healthcare stakeholders. This white paper presents the positions of the Korean Society of Radiology, a leader in medical imaging and digital medicine, on the clinical validation, regulatory approval, coverage decisions, and clinical implementation of novel digital healthcare devices, especially AI software for medical diagnosis and prediction, and explains the scientific principles underlying those positions. Mere regulatory approval by the Food and Drug Administration of Korea, the United States, or other countries should be distinguished from coverage decisions and widespread clinical implementation, as regulatory approval only indicates that a digital tool is allowed for use in patients, not that the device is beneficial or recommended for patient care. Coverage or widespread clinical adoption of AI software tools should require a thorough clinical validation of safety, high accuracy proven by robust external validation, documented benefits for patient outcomes, and cost-effectiveness. The Korean Society of Radiology puts patients first when considering novel digital healthcare tools, and as an impartial professional organization that follows scientific principles and evidence, strives to provide correct information to the public, make reasonable policy suggestions, and build collaborative partnerships with industry and government for the good of our patients.
Objective: The purpose of our study was to investigate the predictive abilities of clinical and computed tomography (CT) features for outcome prediction in patients with coronavirus disease (COVID-19). Materials and Methods: The clinical and CT data of 238 patients with laboratory-confirmed COVID-19 in our two hospitals were retrospectively analyzed. One hundred sixty-six patients (103 males; age 43.8 ± 12.3 years) were allocated in the training cohort and 72 patients (38 males; age 45.1 ± 15.8 years) from another independent hospital were assigned in the validation cohort. The primary composite endpoint was admission to an intensive care unit, use of mechanical ventilation, or death. Univariate and multivariate Cox proportional hazard analyses were performed to identify independent predictors. A nomogram was constructed based on the combination of clinical and CT features, and its prognostic performance was externally tested in the validation group. The predictive value of the combined model was compared with models built on the clinical and radiological attributes alone. Results: Overall, 35 infected patients (21.1%) in the training cohort and 10 patients (13.9%) in the validation cohort experienced adverse outcomes. Underlying comorbidity (hazard ratio [HR], 3.35; 95% confidence interval [CI], 1.67-6.71; p < 0.001), lymphocyte count (HR, 0.12; 95% CI, 0.04-0.38; p < 0.001) and crazy-paving sign (HR, 2.15; 95% CI, 1.03-4.48; p = 0.042) were the independent factors. The nomogram displayed a concordance index (C-index) of 0.82 (95% CI, 0.76-0.88), and its prognostic value was confirmed in the validation cohort with a C-index of 0.89 (95% CI, 0.82-0.96). The combined model provided the best performance over the clinical or radiological model (p < 0.050). Conclusion: Underlying comorbidity, lymphocyte count and crazy-paving sign were independent predictors of adverse outcomes. The prognostic nomogram based on the combination of clinical and CT features could be a useful tool for predicting adverse outcomes of patients with COVID-19.
Minjae Kim;Jeong Hyun Lee;Leehi Joo;Boryeong Jeong;Seonok Kim;Sungwon Ham;Jihye Yun;NamKug Kim;Sae Rom Chung;Young Jun Choi;Jung Hwan Baek;Ji Ye Lee;Ji-hoon Kim
Korean Journal of Radiology
/
제23권11호
/
pp.1078-1088
/
2022
Objective: To develop and validate a model using radiomics features from apparent diffusion coefficient (ADC) map to diagnose local tumor recurrence in head and neck squamous cell carcinoma (HNSCC). Materials and Methods: This retrospective study included 285 patients (mean age ± standard deviation, 62 ± 12 years; 220 male, 77.2%), including 215 for training (n = 161) and internal validation (n = 54) and 70 others for external validation, with newly developed contrast-enhancing lesions at the primary cancer site on the surveillance MRI following definitive treatment of HNSCC between January 2014 and October 2019. Of the 215 and 70 patients, 127 and 34, respectively, had local tumor recurrence. Radiomics models using radiomics scores were created separately for T2-weighted imaging (T2WI), contrast-enhanced T1-weighted imaging (CE-T1WI), and ADC maps using non-zero coefficients from the least absolute shrinkage and selection operator in the training set. Receiver operating characteristic (ROC) analysis was used to evaluate the diagnostic performance of each radiomics score and known clinical parameter (age, sex, and clinical stage) in the internal and external validation sets. Results: Five radiomics features from T2WI, six from CE-T1WI, and nine from ADC maps were selected and used to develop the respective radiomics models. The area under ROC curve (AUROC) of ADC radiomics score was 0.76 (95% confidence interval [CI], 0.62-0.89) and 0.77 (95% CI, 0.65-0.88) in the internal and external validation sets, respectively. These were significantly higher than the AUROC values of T2WI (0.53 [95% CI, 0.40-0.67], p = 0.006), CE-T1WI (0.53 [95% CI, 0.40-0.67], p = 0.012), and clinical parameters (0.53 [95% CI, 0.39-0.67], p = 0.021) in the external validation set. Conclusion: The radiomics model using ADC maps exhibited higher diagnostic performance than those of the radiomics models using T2WI or CE-T1WI and clinical parameters in the diagnosis of local tumor recurrence in HNSCC following definitive treatment.
Blood pressure is one of the important vital signs for monitoring the medical condition of a patient. Automated NIBP(non-invasive blood pressure) monitoring devices calculate systolic and diastolic blood pressures from the oscillation in cuff pressure caused by a pulsation of an artery. To validate the NIBP devices, we developed a simulator to supply the oscillometric waveforms obtained from human subjects. The simulator provided pressure pulses to device-under-test and device readings were compared to the auscultatory references. Fully automated simulation system including OCR(optical character recognition) were developed and used for NIBP monitoring devices. The validation results using the simulator agreed well with previous clinical validation. More validation studies using the standardized oscillometric waveforms would be required for the replacement of clinical trials to validate a new automated NIBP monitoring device.
The number of imaging data sets has significantly increased during radiation treatment after introducing a diverse range of advanced techniques into the field of radiation oncology. As a consequence, there have been many studies proposing meaningful applications of imaging data set use. These applications commonly require a method to align the data sets at a reference. Deformable image registration (DIR) is a process which satisfies this requirement by locally registering image data sets into a reference image set. DIR identifies the spatial correspondence in order to minimize the differences between two or among multiple sets of images. This article describes clinical applications, validation, and algorithms of DIR techniques. Applications of DIR in radiation treatment include dose accumulation, mathematical modeling, automatic segmentation, and functional imaging. Validation methods discussed are based on anatomical landmarks, physical phantoms, digital phantoms, and per application purpose. DIR algorithms are also briefly reviewed with respect to two algorithmic components: similarity index and deformation models.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.