• 제목/요약/키워드: Clinching joining

검색결과 19건 처리시간 0.024초

클린칭 접합력 향상을 위한 금형 형상변수의 영향도 평가 (Effect of Shape Parameters of Tool on Improvement of Joining Strength in Clinching)

  • 김재영;이찬주;이상곤;고대철;김병민
    • 소성∙가공
    • /
    • 제18권5호
    • /
    • pp.392-400
    • /
    • 2009
  • Clinching is a method of joining sheet metals together. This process can be substituted for the resistance spot welding on the joining of aluminum alloys. However, the joining strength of the clinching is lower than that of welding and riveting. The objective of this paper is to evaluate the effect of shape parameters of tools on the joining strength of the clinching and to optimize clinching tools. Twelve parameters have been selected as shape parameters on the clinching tools such as punch and die. The design of experiments (DOE) method is employed to investigate the effect of the shape parameters of tools on the joining strength of the clinching. The neck thickness and undercut of the clinched sheet metal after the clinching, and the separation load at detaching are estimated from the result of FEA using DEFORM. Optimal combination of shape parameters to maximize the joining strength of clinching is determined on the basis of the result of DOE and FEA. In order to validate the result of DOE and FEA, the experiment of clinching is performed for the optimal combination of shape parameters. It is shown from the result of the experiment that optimization of shape parameters improves the joining strength of clinching.

마찰교반 홀 클린칭을 이용한 알루미늄과 고장력강의 접합에 관한 연구 (A Study on Joining of Aluminum and Advanced High Strength Steel Using Friction Stir Hole Clinching)

  • 고룡해;강길석;이경훈;김병민;고대철
    • 소성∙가공
    • /
    • 제26권6호
    • /
    • pp.348-355
    • /
    • 2017
  • In recent years, dissimilar materials such as aluminum, magnesium, titanium, and advanced high strength steel are widely used in automotive body due to environment concerns and fuel consumption. Therefore, joining technology is important for assembling components made of dissimilar materials. In this study, friction stir hole clinching (FSHC) was proposed as a new mechanical joining method to join dissimilar materials. This process stirs and heats the upper sheet, forming mechanical interlocking with the lower sheet. The feasibility of this FSHC process was verified by comparing cross-section of joint in FSHC and hole clinching process under the same processing condition. Taguchi method was also applied to the FSHC process to estimate the effect of process parameters on joint strength and obtain optimal combination of process parameters. Joint strength of FSHC with optimal process condition was compared to that of FSHC with initial process condition as well as that of hole clinching with optimal process condition. Results showed that the FSHC process was useful for joining dissimilar materials, even if the formability of materials was low.

A6451 알루미늄 및 용융아연도금강판의 클린칭 접합특성 및 접합기술의 차체 부품 적용 연구 (A Study on Clinching Characteristics for A6451 Aluminum and Galvanized Steels and the Application of Clinching Technology to Automotive Parts)

  • 권의표;박현경
    • 한국기계기술학회지
    • /
    • 제20권6호
    • /
    • pp.886-893
    • /
    • 2018
  • In this study, clinching characteristics of aluminum and galvanized steels were investigated for the application of clinching as a joining technique to aluminum wheelhouse assembly. A6451 aluminium alloy and galvanized steel sheets were joined by hybrid joining(clinching + adhesive bonding). Tensile-shear load and fracture mode of hybrid joints were investigated. Maximum tensile-shear load of hybrid joints was about six times higher than that of clinched joints without adhesive. Energy absorption values of hybrid joints were higher than those of clinched joints without adhesive as well as resistance spot welded steel joints. Developed aluminum wheelhouse assembly showed higher static stiffness than the existing steel parts. Aluminum wheelhouse inner panel unit was 44% lighter than the steel unit, and the final assembled aluminum wheelhouse was 14.6% lighter than the existing steel parts.

다구찌 기법을 이용한 이종재료 경사 홀 클린칭 접합부 수평 방향 접합강도 예측 및 검증 (Prediction and Verification of Lateral Joining Strength for Tapered-Hole Clinching using the Taguchi Method)

  • 강동식;박으뜸;;강범수;송우진
    • 소성∙가공
    • /
    • 제25권1호
    • /
    • pp.36-42
    • /
    • 2016
  • Fiber metal laminates (FMLs) are well known for improved fatigue strength, better impact resistance, superior damage tolerance and slow crack growth rate compared to traditional metallic materials. However, defects and loss of strength of a composite material can occur due to the vertical load from the punch during the joining with a dissimilar material using a conventional clinching method. In the current study, tapered-hole clinching was an alternative process used to join Al 5052 and FMLs. The tapered hole was formed in the FML before the joining. For the better understanding of static and dynamic characteristics, a clinched joining followed by a tensile-shear test was numerically simulated using the finite element analysis. The design parameters were also evaluated for the geometry of the tapered hole by the Taguchi method in order to improve and compare the lateral joining strength of the clinched joint. The influence of the neck thickness and the undercut were evaluated and the contribution of each design parameter was determined. Then, actual experiments for the joining and tensile-shear test were conducted to verify the results of the numerical simulations. In conclusion, the appropriate combination of the design parameters can improve the joining strength and the cross-sections of the tapered-hole clinched joint formed in the actual experiments were in good agreement with the results of the numerical simulations.

접착-성형 공정을 이용한 중첩된 박판간의 결합 (Form-joining Process with the Aid of Adhesive for Joining of a Sheet Metal Pair)

  • 정창균;김태정;양동열;권순용
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 춘계학술대회논문집
    • /
    • pp.131-135
    • /
    • 2003
  • The form-joining process (or clinching) uses a set of die and punch to impose the plastic deformation-induced geometric constraint on a sheet metal pair, But their joining strength ranges 50-70 percent of that of the resistance spot welding. In this paper, a new form-joining process with the aid of adhesive is proposed in which an epoxy adhesive is applied to a sheet metal pair, to improve joining strength. The strength and mechanical properties of the new process are discussed and compared for other joining processes.

  • PDF

Hole 클린칭을 이용한 고장력강판과 Al6061 이종소재의 접합 (Joining High-Strength Steel and Al6061 Sheet Using Hole Clinching Process)

  • 안남식;이찬주;이정민;고대철;이선봉;김병민
    • 대한기계학회논문집A
    • /
    • 제36권6호
    • /
    • pp.691-698
    • /
    • 2012
  • 일반적인 클린칭 접합공정에서 고장력강과 알루미늄의 이종소재간의 접합시 고장력강의 낮은 연신율과 높은 강도로 인해 클린칭 접합시 파단이 발생하거나 높은 클린칭 접합하중이 요구된다. 이러한 문제점을 해결하기 위해 본 연구에서는 클린칭 접합시 고장력강의 변형없이 알루미늄의 변형만을 이용한 홀 클린칭 접합공정을 개발하였다. 고장력강에 홀가공을 적용하여 고장력강의 변형을 배제하였다. 홀 클린칭 접합의 요구접합강도를 기초로 클린칭 접합의 기하학적 구속량을 결정하였으며, 홀 클린칭 금형의 형상은 성형체적 일정조건을 이용하여 설계하였다. 설계된 클린칭 접합공정의 유효성을 평가하기 위해 유한요소해석을 수행하여, 홀 클린칭 접합이 가능함을 확인하였다. 또한 홀 클린칭 접합의 접합강도는 인장전단시험을 통하여 평가하였다. 홀 클린칭 접합강도는 2.56kN으로 요구접합강도와 비교하여 동등수준 이상의 값을 가짐을 확인하였다.

다구찌 기법을 이용한 섬유금속적층판과 Al 5052 합금의 경사 홀 클린칭 접합력 향상을 위한 수치적 연구 (Numerical Study for the Improvement of Tapered-hole Clinching Joint Strength of Fiber Metal Laminates and Aluminum 5052 using the Taguchi Method)

  • 강동식;이병언;박으뜸;김정;강범수;송우진
    • 소성∙가공
    • /
    • 제24권1호
    • /
    • pp.37-43
    • /
    • 2015
  • The purpose of the current study is to improve the clinching joint strength of aluminum and fiber metal laminates (FMLs) comprised of three layers. The joining of FML and Al 5052 by a conventional clinching joint has some disadvantages such as necking of the upper sheet, lack of interlocking, defects caused by the vertical load, and especially loss of strength of the composite material due to the low ductility. In the current study, a tapered-hole clinching method is proposed as an alternative for the joining of Al 5052 and FMLs. A hole with a tapered shape is formed before the joining process. The design parameters were evaluated using the Taguchi method for the geometry of the tapered hole in order to determine the maximum separation load. The diameter of the punch corner, clearance, punch stroke and the tapered length were used as the main variables in the Taguchi method. In conclusion, the contribution ratio for each of the fours variable examined was 35.07%, 22.44%, 21.32% and 14.11%, respectively. In addition, the appropriate combination of the design parameters can make a 5% improvement in the vertical direction joint strength.

박판페어의 기계적 접합장치의 결합강도 개선에 관한 연구 (Improvement of Joining Strength of Mechanical Joining Process of a Sheet Metal Pair)

  • 윤희주;김태정;양동열;권순용;신철수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.29-32
    • /
    • 2002
  • The mechanical joining process of a sheet metal pair has been developed in order to replace the resistance spot welding process in case that joining of mechanically unweldable materials and coated sheet metals with different thickness are needed. Form-joining or clinching, a kind of mechanical joining process, is defined as joining process of a sheet metal pair by geometric constraint imposed by plastic deformation of workpieces without any additive part. It has been reported that the joining strength by commercial form-joining apparatus is 50∼70 percent of that by resistance spot welding. Therefore, a two-step form-joining process with a secondary punch is proposed. The device is designed to improve the joining strength by increasing the geometric constraint of the deformed shape by combining a primary punch, a secondary punch and a female die. In order to verify the improved joining strength by the designed process, the tensile-shear strength, the peel-tension strength and the asymmetric peel-tension strength are compared with those by the TOX process and resistance spot welding.

  • PDF

초고장력강과 알루미늄 5052 소재의 클린칭 접합특성 (Joint characteristics of advanced high strength steel and A15052 alloy in the clinching process)

  • 이찬주;김재영;이상곤;고대철;;김병민
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.401-404
    • /
    • 2009
  • The purpose of this study is investigating the joint characteristics of advanced high strength steel DP780 and Al5052 alloy sheet in the clinching process. It is difficult to join the advanced high strength steel with light-weight materials like aluminum alloy, because of low formability of DP780. The defects of clinching joint such as necking of the upper sheet, cracks of the lower sheet and no interlocking were occurred by different ductility between advanced high strength steel and aluminum alloy. The clinching conditions should be optimized to interlock without any defects. In this study, the effect of process parameters of clinching process on joinability of advanced high strength steel with Al5052 alloy was investigated by using FE-analysis. From the result of FE-analysis, the clearance between clinching punch and die, die depth and the shape of die cavity mainly affected the joinability of advanced high strength steel with Al5052 alloy.

  • PDF

중첩된 박판간의 결합을 위한 접착-성형공정 (Form-Joining Process with the Aid of Adhesive for Joining of Sheet Metal Pair)

  • 정창균;김태정;양동열
    • 소성∙가공
    • /
    • 제13권4호
    • /
    • pp.342-349
    • /
    • 2004
  • The form-joining process (or clinching) uses a set of die and punch to impose the plastic deformation-induced geometric constraint on a sheet metal pair. The joining strength from the process ranges 50-70 percent of that of the resistance spot welding. In this paper, a new form-joining process with the aid of an adhesive is proposed in which an epoxy adhesive is applied to a sheet metal pair, and before it cures the pair is clinched to cause the geometric constraint in the form of a protrusion. In order to reduce the forming load and the height of protrusions, a new die and punch set with a very small clearance is devised to reduce the depth of drawing and the forming load. Taguchi method is employed to find the optimal values of design parameters. To implement each case of the orthogonal array, the finite element method is used. The experiments show that in the tensile-shear test, the bonding strength of the new form-joining process with an epoxy adhesive is approximately the same as that of the resistance spot welding; and in comparison with the other two form-joining processes with an epoxy adhesive, the height of protrusions is reduced by more than 65 percent and the forming load by 50 percent.