• 제목/요약/키워드: Climbing Performance

검색결과 86건 처리시간 0.025초

외벽등반 로봇의 성능평가 방법 및 응용 (Performance evaluation method for wall-climbing robots and its application)

  • 김진만;김헌희;남택근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제41권1호
    • /
    • pp.62-69
    • /
    • 2017
  • 본 논문은 외벽에 부착하여 이동이 가능한 등반로봇의 성능평가 방법을 다룬다. 등반로봇에 관한 기존의 문헌을 토대로 볼 때, 등반로봇의 성능평가에 관해 일관되고 명쾌한 성능지표 및 방법이 제시되고 있지는 않다. 등반로봇은 부착방식 및 이동방식에 따라 다양하게 구현될 수 있으므로, 형태와 상관없이 보다 일반화된 성능평가 방법이 요구된다. 이에 본 논문은 등반로봇의 성능평가를 위한 2가지 평가지표(수직부착하중, 수직등반속도)와 평가방법을 제안한다. 제안된 방법의 효용성을 검증하기 위하여, 본 논문은 자체 개발된 선체외벽 등반로봇을 대상으로 제안된 성능평가 방법을 적용한다. 보다 구체적으로, 수직부착하중은 등반로봇의 슬립측정을 통해 18.5kg으로 평가되었고, 수직등반속도는 등반로봇의 위치제어시스템을 통해 41cm/s으로 평가되었다.

건물 외벽 장애물 극복을 위한 3단 모듈형 승월로봇 (A Three-unit Modular Climbing Robot for Overcoming Obstacles on the Facade of Buildings)

  • 이청화;주백석
    • 한국기계가공학회지
    • /
    • 제16권2호
    • /
    • pp.114-123
    • /
    • 2017
  • This paper introduces a novel obstacle-climbing robot that moves on the facade of buildings and its climbing mechanism. A winch system set on the top of the building makes the vertical motion of the robot while it climbs obstacles that protrude from the wall surface. The obstacle-climbing robot suggested in this research is composed of a main platform and three modular climbing units. Various sensors installed on each climbing unit detect the obstacles, and the robot controller coordinates the three units and the winch to climb the obstacles using the obstacle-climbing mechanism. To evaluate the performance of the developed robot prototype, a test bed, which consists of an artificial wall and an obstacle, was manufactured. The obstacle size and the time required to climb the obstacle were selected as the performance indices, and extensive experiments were carried out. As a result, it was confirmed that the obstacle-climbing robot can climb various-sized obstacles with a reasonable speed while it moves on the wall surface.

가변 형상 무한 궤도 차량의 성능 해석 및 설계 (Design and Performance Analysis of a Variable Configuration Tracked Vehicle)

  • 김한호;곽윤근
    • 한국자동차공학회논문집
    • /
    • 제9권1호
    • /
    • pp.20-27
    • /
    • 2001
  • A variable configuration tracked vehicle(VCTV) is developed to reduce turning energy and improve climbing ability for stairs. This mechanism has four track T-type frames. By changing the driving direction, each track T-type frame rotates to minimize the contact area with ground. It also has better performance than other VCTV in energy consumption of turning. Futhermore this mechanism is more stable than other VCTV on the rough terrain. When climbing stairs, each track T-type frame rotates to obtain a front attack angle and keep stability on steep stairs. The design parameters of components of track T-type frames are optimized to enhance the performance of climbing stairs. Performance indices include a stable angle, a climbing ability, a height of the vertical obstacle. In case that the overall length of the mechanism is 0.2m, it is required that the radius of the wheels should be 5mm and the length track contacted with he ground should be 0.09m to climb higher and steeper stairs.

  • PDF

시공자동화를 위한 크라이밍 유압시스템의 구동성능 분석 (Drive Performance Analysis of Climbing Hydraulic Robots System for Construction Automation)

  • 강고운;이명도;이규원;조훈희;강경인
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2010년도 춘계 학술논문 발표대회 1부
    • /
    • pp.33-36
    • /
    • 2010
  • The attention in construction Automation is getting higher since it could be the answer to the lack of skilled labor by decrease in construction population and aging which adversely affects productivity and quality in the construction site. We are on the way to develop a construction automation system adequate for domestic circumstances in Korea; it is called RCA(Robotic-crane based Construction Automation)system. Climbing hydraulic robots system is a part of RCA system and makes Construction factory(CF) climb through the guide rail on the core wall. The safety of climbing hydraulic robots system is at issue due to the overloaded weight of CF. Preventing this issue, present study did the design verification through the structural analysis and the simulation. Mock-up test also was done to analyze the drive performance of climbing hydraulic robots system.

  • PDF

정적 및 진동 특성을 고려한 수직이동 로봇의 최적설계 (Optimal Design for a Wall-Climbing Robot with Static and Vibration Characteristics)

  • 안석희;최국진;홍대선
    • 한국공작기계학회논문집
    • /
    • 제17권6호
    • /
    • pp.35-42
    • /
    • 2008
  • Most of tasks for vertical surface work in shipyard have been accomplished by human workers. However, such manual work often causes injury to workers, also the production cost becomes high due to increasing individual wage. To cope with the circumstance, shipbuilding companies try to introduce wall-climbing robots for carrying out such kind of tasks. In designing a wall-climbing robot, it is essential to minimize its own weight to improve the performance such as moving speed and power saving. For such purpose. this study proposes a method of optimal design for a wall-climbing robot using a genetic algorithm with multi-objective function. Specifically, the thickness of the robot base is minimized to reduce the weight while maintaining the allowable strength and avoiding the resonance frequencies. The proposed method is applied to the design of a wall-climbing robot, and the result shows that the method is useful at an early design stage.

견인 및 등판 성능을 통한 고소작업기계의 모터 주행장치 설계 (Design of Motor-driven Traveling System for High Clearance Working Machinery based on Tractive Performance and Hill Climbing Ability)

  • 이상식;장세윤;김태수;남규철;박원엽
    • 한국정보전자통신기술학회논문지
    • /
    • 제9권3호
    • /
    • pp.257-265
    • /
    • 2016
  • 이 연구는 과수원에 높은 통관 작업 기계에 적용되는 전동식 트럭 주행 시스템을 적용한 최적 설계가 제안되어 있습니다. 견인 성능과 언덕 등반 능력은 예측 및 기계 작업이 높은 틈새를 이용하여 과수원의 토양 특성을 고려하여 최적의 모터 주행 시스템을 평가 하였다. 견인 성능을 위한 설계 기준은 운동 저항을 뺀 견인력으로부터 산출 된 견인능력에 기초를 두었다. 등판 능력은 20%의 경사면을 3km/h의 속도로 수행되도록 하는 설계기준을 가지고 있다. 견인 및 등판 능력의 평가 결과에 따라 두 개의 DV48V, 4500rpm, 16kW AC 모터는 좌우 양쪽에서 독립적인 괘도를 갖는 것으로 적용된다. 각각의 모터는 50:1 감속기어 비율을 통하여 트랙형 주행 시스템의 구동 스프로켓에 동력을 전달하도록 설계되었다. 본 연구의 전동 트랙형 주행 시스템은 충분한 견인성능 및 등판 능력을 충분히 입증하고 20%의 경사지면을 갖는 과수원의 토양에서의 등반저항보다 12.5%가 더 높은 396kgf의 견인능력을 가지고 있는 것으로 밝혀졌습니다.

Study on an 8-Wheel Suspension to Enhance the Hill-Climbing Performance for a Planetary Exploration Rover

  • Eom, We-Sub;Lee, Joo-Hee;Gong, Hyun-Cheol;Choi, Gi-Hyuk
    • Journal of Astronomy and Space Sciences
    • /
    • 제31권4호
    • /
    • pp.347-351
    • /
    • 2014
  • Planetary exploration rovers are likely to make a trip on a winding and sloping road of irregular surfaces to the destination in order to accomplish scientific missions. One of the key technologies for rovers is a suspension for traveling and performing exploration missions; the suspension is an essential area of technology for a stable movement of a rover. In this study, an 8-wheel suspension is designed to enable efficient climbing of slopes on a passage to the destination. For the two front wheels among the eight wheels, the moment at the pivot connecting two wheels is derived when the distance between the wheels and the torque of wheels are same. A test experiment was performed to compare the magnitude of moment according to the change in tilt angle and the position of the pivot. Finally, a suspension design considering the position of the pivot was proposed to enhance the hill-climbing performance.

이웃해 탐색 기법을 이용한 Maximal Covering 문제의 해결 (Neighborhood Search Algorithms for the Maximal Covering Problem)

  • 황준하
    • 한국컴퓨터정보학회논문지
    • /
    • 제11권1호
    • /
    • pp.129-138
    • /
    • 2006
  • 지금까지 maximal covering문제를 해결하기 위해 다양한 기법들이 적용되어 왔다. 타부 탐색 역시 그 중의 하나이다. 그러나 기존 연구에서는 타부 탐색을 비롯한 언덕오르기 탐색이나 시뮬레이티드 어닐링과 같은 이웃해 탐색 기법들에 대한 종합적인 분석과 성능 향상을 위한 노력이 부족하였다. 본 논문에서는 다양한 실험과 분석을 통해 이웃해 탐색 기법들의 성능을 향상시키기 위한 방안을 소개한다. 기본적으로 모든 이웃해 탐색 기법들은 k-exchange 이웃해 생성 방법을 사용하고 있으며 다양한 파라미터 설정에 따라 각 기법의 성능이 어떻게 달라지는가를 분석하였다. 실험 결과 단순 언덕오르기 탐색과 시뮬레이티드 어닐링이 다른 기법들에 비해 훨씬 우수한 탐색 성능을 보였으며, 일반적인 경우와는 달리 단순 언덕오르기 탐색이 시뮬레이티드 어닐링과 비슷한 성능을 보임을 확인하였다.

  • PDF

계단 보행 근력 보조를 위한 착용형 로봇의 설계 및 제어 (Design and Control of a Wearable Robot for Stair-Climbing Assistance)

  • 김명주;강병현;김옥식;서기원;김정엽
    • 한국생산제조학회지
    • /
    • 제26권1호
    • /
    • pp.89-99
    • /
    • 2017
  • This paper describes the development of a thigh wearable robot for power assistance during stair climbing. In the wearable robot developed in this study, high-power BLDC motors and high-capacity harmonic reduction gears are used to effectively assist the thigh muscle during stair climbing. In particular, normal ground and stair are distinguished accurately by using wireless smart shoes, and the stair climbing assistance is performed by activating the actuators at an appropriate time. Impedance of the hip joint was effectively reduced by performing friction compensation of the gears, and a wearing adjustment mechanism was designed to fit the robot to the thigh by conveniently modifying the width and tilting angle of the robot using set collars. Consequently, the performance of the developed thigh wearable robot was verified through stair climbing experiments with EMG measurement.

등산 활동 참여동기와 위험지각 수준에 따른 위험감소행동 연구 (Study on Risk Reduction Behavior According to Participation Motivation of Mountain Climbing Activity and Level of Risk Perception)

  • 방기성;유신정
    • 한국의류산업학회지
    • /
    • 제15권4호
    • /
    • pp.523-532
    • /
    • 2013
  • This study investigates risk reduction behavior with risk perception in outdoor wear purchase situations. Data were collected via a questionnaire from 400 consumers between the ages of 20 to 50 residing in Seoul and Kyonggi-do. Data analysis were conducted with SPSS 20 program on the reliability test, factor analysis, cluster analysis, t-test, ANOVA, and Duncan's multiple range test. Factor analyses were employed for the participation motivation of mountain climbing activities, risk reduction behavior and risk perception. Five factors were for the participation motivation of mountain climbing activities (health and fitness, external ostentation, achievement and excitement, improvement of climbing skills, and society). Five factors were for risk perception (fashionability loss and social risk, time and convenience loss, economic risk, performance risk, and psychological risk). Five factors were for the risk reduction behavior (interpersonal information sources use, marketer-dominated information sources use, professional information sources use, pre-purchase deliberation/observation/experience, and brand dependence). Three clusters were identified based on the motivation of outdoor activities (the affiliation/display, the health/internal informativeness and low motivation). The participation motivation for mountain climbing activities were varied. Manufacturers should increase efforts to develop products with good qualities at a reasonable cost as well as establish new marketing strategies since the risk of product performance and economic efficiency in the purchase of outdoor wear was a significant consumer perception.