• Title/Summary/Keyword: Climatic Change

Search Result 509, Processing Time 0.021 seconds

Evaluation of Agro-Climatic Index Using Multi-Model Ensemble Downscaled Climate Prediction of CMIP5 (상세화된 CMIP5 기후변화전망의 다중모델앙상블 접근에 의한 농업기후지수 평가)

  • Chung, Uran;Cho, Jaepil;Lee, Eun-Jeong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.2
    • /
    • pp.108-125
    • /
    • 2015
  • The agro-climatic index is one of the ways to assess the climate resources of particular agricultural areas on the prospect of agricultural production; it can be a key indicator of agricultural productivity by providing the basic information required for the implementation of different and various farming techniques and practicalities to estimate the growth and yield of crops from the climate resources such as air temperature, solar radiation, and precipitation. However, the agro-climate index can always be changed since the index is not the absolute. Recently, many studies which consider uncertainty of future climate change have been actively conducted using multi-model ensemble (MME) approach by developing and improving dynamic and statistical downscaling of Global Climate Model (GCM) output. In this study, the agro-climatic index of Korean Peninsula, such as growing degree day based on $5^{\circ}C$, plant period based on $5^{\circ}C$, crop period based on $10^{\circ}C$, and frost free day were calculated for assessment of the spatio-temporal variations and uncertainties of the indices according to climate change; the downscaled historical (1976-2005) and near future (2011-2040) RCP climate sceneries of AR5 were applied to the calculation of the index. The result showed four agro-climatic indices calculated by nine individual GCMs as well as MME agreed with agro-climatic indices which were calculated by the observed data. It was confirmed that MME, as well as each individual GCM emulated well on past climate in the four major Rivers of South Korea (Han, Nakdong, Geum, and Seumjin and Yeoungsan). However, spatial downscaling still needs further improvement since the agro-climatic indices of some individual GCMs showed different variations with the observed indices at the change of spatial distribution of the four Rivers. The four agro-climatic indices of the Korean Peninsula were expected to increase in nine individual GCMs and MME in future climate scenarios. The differences and uncertainties of the agro-climatic indices have not been reduced on the unlimited coupling of multi-model ensembles. Further research is still required although the differences started to improve when combining of three or four individual GCMs in the study. The agro-climatic indices which were derived and evaluated in the study will be the baseline for the assessment of agro-climatic abnormal indices and agro-productivity indices of the next research work.

A Study on relation to the Climatic Adaptation and Clothing Weight - In the Case of High School Students - (기후적응과 착의량의 관계에 관한 연구 -고등학교 학생을 중심으로-)

  • Ahn Pil-ja;Choi Jeong-Wha
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.16 no.4 s.44
    • /
    • pp.417-430
    • /
    • 1992
  • To examine the effects of clothes upon human's physiological adaptation to the changes of climatic conditions, clothing weight was examined. The results are as follows; 1. According to the change in temperature, the total, upper and outer clothing weight showed remarked change. Clothing weight change was greatest between the July and October, the change was greater in the coast land and the girl students. 2. The clothing weight tends to be light under outdoor in both regions in all seasons except in July, it is remarked in inland and December. 3. The correlation between $R\"{o}hrer$ Index, Body Fat and clothing weight was recognised to be significantly reversed. 4. Positive correlation between health conditions and clothing weight was recognized in December 5. The correlation between exercise hours and clothing weight was negatively significant in December.

  • PDF

The Influence of Change in Climatic Environment during the Song-Yuan Dynasty Had on the Development of Medical Science and Disease Emergence (송원(宋元)시대 기후환경변화가 질병과 의학발전에 미친 영향)

  • Kim, Ji-Soo;Jung, Ji-Hun;Park, Hae-Mo
    • The Journal of Korean Medical History
    • /
    • v.31 no.2
    • /
    • pp.53-62
    • /
    • 2018
  • It is known that the development of medical science is influenced by various social environmental factors. Historically, Chinese Medicine developed the most during the Song Yuan dynasty, and the reason for this was known to be due to socio-political factors. According to recent studies, however, this period also had severe changes in climate and environment. Therefore, this study was conducted under the premise that this change in climate and environment influenced medical development. When looking at the coldness of the 11th~12th century and data indicating warming before and after this period, the Song Yuan dynasty went through drastic periods of climate change. Therefore, diseases related to heat such as bubonic plague, measles, and malaria were common. Furthermore, due to occasional wars during the Song Yuan dynasty, social unrest was aggravated and infectious diseases spread due to land development and environmental pollution. As the health of people were threatened due to these factors, the printing and distribution of medical text were encouraged, and during this process, the great 4 doctors of Jin-Yuan appeared. The reason why they studied cures for infectious diseases due to heat was related to climatic environment change. The development in medical science is closely related to socio-political factors, however the change in climatic environments are inevitably related to disease emergence as well. Therefore, it should always be taken into consideration as an important factor that promotes development in medical science.

Change of Climatic Productivity Index for Rice under Recent Climate Change in Korea (최근 8-9월의 기상특징과 기후생산력지수의 변화)

  • Shim, Kyo-Moon;Kim, Yong-Seok;Jung, Myung-Pyo;Choi, In-Tae
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.4
    • /
    • pp.384-388
    • /
    • 2014
  • Air temperature has increased, while sunshine hour has decreased during the grain filling period of most rice cultivars (August to September) during the past 12 years from 2001 through 2012 in Korea. Climatic Productivity Index (CPI) has fallen because of the decreased sunshine hour and increased air temperature during the grain filling period, and the degree of reduction was greater with earlier heading. For stable rice production, we will need to delay the heading of rice as a cultivation measure against the future climatic trend. Grain yield showed no significant trend for past 12 years. However, the year to year change in grain yield showed a similliar pattern with that of CPI. Especially, a linear function relating rice yield to CPI explained approximately 63% of variation in grain yield with the heading date of August $11^{th}$ period.

Effect of Climate Change Characteristics on Operation of Water Purification Plant (정수장 운영에 영향을 미치는 기후변화 요인 분석)

  • Youjung Jang;Hyeonwoo Choi;Seojun Lee;Jaeyoung Choi;Hyeonsoo Choi;Heekyong Oh
    • Journal of Korean Society on Water Environment
    • /
    • v.40 no.2
    • /
    • pp.89-100
    • /
    • 2024
  • Climate change has a broad impact on the entire water environment, and this impact is growing. Climate adaptation in water supply systems often involves quantity and quality control, but there has been a lack of research examining the impacts of climatic factors on water supply productivity and operation conditions. Therefore, the present study focused on, first, building a database of climatic factors and water purification operating conditions, and then identifying the correlations between factors to reveal their impacts. News big data was analyzed with keywords of climatic factors and water supply systems in either nationwide or region-wide analyses. Metropolitan area exhibited more issues with cold waves whereas there were more issues with drought in the Southern Chungcheong area. A survey was conducted to seek experts' opinions on the climatic impacts leading to these effects. Pre-chlorination due to drought, high-turbidity of intake water due to rainfall, an increase of toxins in intake water due to heat waves, and low water temperature due to cold waves were expected. Pearson correlation analysis was conducted based on meteorological data and the operating data of a water purification plant. Heavy rain resulted in 13 days of high turbidity, and the subsequent low turbidity conditions required 3 days of high coagulant dosage. This insight is expected to help inform the design of operation manuals for waterworks in response to climate change.

Climatic Influence on the Water Requirement of Wheat-Rice Cropping System in UCC Command Area of Pakistan (파키스탄 UCC 관개지역 밀·쌀 재배 필요수량에 대한 기후변화 영향)

  • Ahmad, Mirza Junaid;Choi, Kyung Sook
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.5
    • /
    • pp.69-80
    • /
    • 2018
  • This study investigated climate change influences over crop water requirement (CWR) and irrigation water requirement (IWR) of the wheat-rice cropping system of Upper Chenab Canal (UCC) command in Punjab Province, Pakistan. PRECIS simulated delta-change climate projections under the A1B scenario were used to project future climate during two-time slices: 2030s (2021-2050) and 2060s (2051-2080) against baseline climatology (1980-2010). CROPWAT model was used to simulate future CWRs and IWRs of the crops. Projections suggested that future climate of the study area would be much hotter than the baseline period with minor rainfall increments. The probable temperature rise increased CWRs and IWRs for both the crops. Wheat CWR was more sensitive to climate-induced temperature variations than rice. However, projected winter/wheat seasonal rainfall increments were satisfactorily higher to compensate for the elevated wheat CWRs; but predicted increments in summer/rice seasonal rainfalls were not enough to complement change rate of the rice CWRs. Thus, predicted wheat IWRs displayed a marginal and rice IWRs displayed a substantial rise. This suggested that future wheat production might withstand the climatic influences by end of the 2030s, but would not sustain the 2060s climatic conditions; whereas, the rice might not be able to bear the future climate-change impacts even by end of the 2030s. In conclusion, the temperature during the winter season and rainfall during the summer season were important climate variables controlling water requirements and crop production in the study area.

Distribution of Agro-climatic Indices in Agro-climatic Zones of Northeast China Area between 2011 and 2016 (최근 6년간 중국 동북지역의 농업기후지대별 농업기후지수의 분포)

  • Jung, Myung-Pyo;Park, Hye-Jin;Ahn, Joong-Bae
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_2
    • /
    • pp.641-645
    • /
    • 2017
  • This study was conducted to compare three agro-climatic indices among 22 agro-climatic zones in Northeast China area. Meteorological data produced by NASA (MERRA-2) was used to calculate growing degree days (GDD), frost free period (FFP), and growth season length (GSL) at this study sites. The three indices did not differ among 6 years (2011-2016). However, they showed statistical spatial difference among agro-climatic zones. The GDD ranged between $531.7^{\circ}C{\cdot}day$ (zone 22) and $1650.6^{\circ}C{\cdot}day$ (zone 1). The range of the FFP was from 141.5 day (zone 22) to 241.7 day (zone 1). And the GSL showed spatial distribution between 125.1 day (zone 22) and 217.9 day (zone 1).

Predicting the Changes of Yearly Productive Area Distribution for Pinus densiflora in Korea Based on Climate Change Scenarios (기후변화 시나리오에 의한 중부지방소나무의 연도별 적지분포 변화 예측)

  • Ko, Sung Yoon;Sung, Joo Han;Chun, Jung Hwa;Lee, Young Geun;Shin, Man Yong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.1
    • /
    • pp.72-82
    • /
    • 2014
  • This study was conducted to predict the changes of yearly productive area distribution for pinus densiflora under climate change scenario. For this, site index equations by ecoprovinces were first developed using environmental factors. Using the large data set from both a digital forest site map and a climatic map, a total of 48 environmental factors including 19 climatic variables were regressed on site index to develop site index equations. Two climate change scenarios, RCP 4.5 and RCP 8.5, were then applied to the developed site index equations and the distribution of productive areas for pinus densiflora were predicted from 2020 to 2100 years in 10-year intervals. The results from this study show that the distribution of productive areas for pinus densiflora generally decreases as time passes. It was also found that the productive area distribution of Pinus densiflora is different over time under two climate change scenarios. The RCP 8.5 which is more extreme climate change scenario showed much more decreased distribution of productive areas than the RCP 4.5. It is expected that the study results on the amount and distribution of productive areas over time for pinus densiflora under climate change scenarios could provide valuable information necessary for the policies of suitable species on a site.

A study on the multi-functional fashion design - focused on the climatic change and environment consciousness- (다기능 패션디자인에 관한 연구 - 기후변화 및 환경의식을 중심으로 -)

  • Lee, Hyun-Young;Park, Hye-Won
    • Journal of Fashion Business
    • /
    • v.13 no.2
    • /
    • pp.123-135
    • /
    • 2009
  • To cope with the threats posed by climate change actively, this study tries to examine multi-functional fashion design with the moral awareness of environment, which could be a direct cause of climate change. Literature and patents on multi-functional fashion design following climate change at home and abroad are examined to find the trend of multi-functional fashion designs. And fashion design that can protect human body to cope with climate change is analyzed. This study found that first, it is necessary to recognize the environment problems in the design process so that material is used to the minimum to minimize pollution and enable welfare and continuation of human society; second, environmentally friendly production and rational consumption such as manual production without waste of energy and material need to be favored to minimize the destruction of environment; third, to cope with environment and climate changes, design that allows an item to have diverse functions is needed so that it can have varied lengths, widths, and thicknesses, and it can be put on and taken off.