• Title/Summary/Keyword: Climate policy uncertainty

Search Result 45, Processing Time 0.027 seconds

Geospatial Assessment of Frost and Freeze Risk in 'Changhowon Hwangdo' Peach (Prunus persica) Trees as Affected by the Projected Winter Warming in South Korea: III. Identifying Freeze Risk Zones in the Future Using High-Definition Climate Scenarios (겨울기온 상승에 따른 복숭아 나무 '장호원황도' 품종의 결과지에 대한 동상해위험 공간분석: III. 고해상도 기후시나리오에 근거한 동해위험의 미래분포)

  • Chung, U-Ran;Kim, Jin-Hee;Kim, Soo-Ock;Seo, Hee-Cheol;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.4
    • /
    • pp.221-232
    • /
    • 2009
  • The geographical distribution of freeze risk determines the latitudinal and altitudinal limits and the maximum acreage suitable for fruit production. Any changes in its pattern can affect the policy for climate change adaptation in fruit industry. High-definition digital maps for such applications are not available yet due to uncertainty in the combined responses of temperature and dormancy depth under the future climate scenarios. We applied an empirical freeze risk index, which was derived from the combination of the dormancy depth and threshold temperature inducing freeze damage to dormant buds of 'Changhowon Hwangdo' peach trees, to the high-definition digital climate maps prepared for the current (1971-2000), the near future (2011-2040) and the far future (2071-2100) climate scenarios. According to the geospatial analysis at a landscape scale, both the safe and risky areas will be expanded in the future and some of the major peach cultivation areas may encounter difficulty in safe overwintering due to weakening cold tolerance resulting from insufficient chilling. Our test of this method for the two counties representing the major peach cultivation areas in South Korea demonstrated that the migration of risky areas could be detected at a sub-grid scale. The method presented in this study can contribute significantly to climate change adaptation planning in agriculture as a decision aids tool.

Analysis of Climate Change Adaptation Researches Related to Health in South Korea (한국의 건강 분야 기후변화적응 연구동향 분석)

  • Ha, Jongsik
    • Journal of Climate Change Research
    • /
    • v.5 no.2
    • /
    • pp.139-151
    • /
    • 2014
  • It is increasingly supported by scientific evidence that greenhouse gas caused by human activities is changing the global climate. In particular, the changing climate has affected human health, directly or indirectly, and its adverse impacts are estimated to increase in the future. In response, many countries have established and implemented a variety of mitigation and adaptation measures. However, it is significant to note that climate change will continue over the next few centuries and its impacts on human health should be tackled urgently. The purpose of this paper is to examine domestic policies and research in health sector in adaptation to climate change. It further aims to recommend future research directions for enhanced response to climate change in public health sector, by reviewing a series of adaptation policies in the selected countries and taking into account the general features of health adaptation policies. In this regard, this study first evaluates the current adaptation policies in public health sector by examining the National Climate Change Adaptation Master Plan(2011~2015) and Comprehensive Plan for Environment and Health(2011~2020) and reviewing research to date of the government and relevant institutions. For the literature review, two information service systems are used: namely, the National Science and Technology Information Service(NTIS) and the Policy Research Information Service & Management(PRISM). Secondly, a series of foreign adaptation policies are selected based on the global research priorities set by WHO (2009) and reviewed in order to draw implications for domestic research. Finally, the barriers or constraints in establishing and implementing health adaptation policies are analyzed qualitatively, considering the general characteristics of adaptation in the health sector to climate change, which include uncertainty, finance, technology, institutions, and public awareness. This study provides four major recommendations: to mainstream health sector in the field of adaptation policy and research; to integrate cross-sectoral adaptation measures with an aim to the improvement of health and well-being of the society; to enhance the adaptation measures based on evidence and cost-effectiveness analysis; and to facilitate systemization in health adaptation through setting the key players and the agenda.

Legal Improvements for SWG Application Relevant to the Water Loop System with Multi-Water Resources (SWG 추진을 위한 다중수원 워터루프 시스템 관련 법제도 개선방안)

  • Suh, Jin Suhk;Kim, Young Hwa;Han, Kuk Heon;Kim, Dong Hwan
    • KCID journal
    • /
    • v.21 no.1
    • /
    • pp.127-140
    • /
    • 2014
  • Recently drastic climate changes(e.g., extreme floods and droughts) are often taking place around the world. Even an increase in uncertainty, population, and mega cities has caused drastic changes in water recycle process. As in other countries, Korea has faced some issues relevant to water security. In response to these changes, Smart Water Grid(SWG) system combining the current water resources management with ICT (Information and Communications Technology) is considered as a new paradigm for the Korean water resources management. This study aims to explore and identify influential factors contributing to the SWG system's application to analyze the importance and role of those factors, and then to offer a policy suggestion for the successful application of the SWG system along with legislative improvements in Korea. In this study, we looked at different barriers related to the SWG application and also the complicated Korean water laws, enacted by different ministries and in order to efficiently apply the SWG system to the current Korean water resources management structures. This study employed qualitative research methods to analyze and identify the priorities of the tasks to be implemented by analyzing conditions for the SWG application, especially related to multi water sources and micro water grid, because legal and institutional measures can be more important to manage conflicts between different stakeholders once the SWG enters a phase of standardization and commercialization from its development stage.

  • PDF

Study on Emerging Security Threats and National Response

  • Il Soo Bae;Hee Tae Jeong
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.4
    • /
    • pp.34-41
    • /
    • 2023
  • The purpose of this paper is to consider the expansion of non-traditional security threats and the national-level response to the emergence of emerging security threats in ultra-uncertain VUCA situations. As a major research method for better analysis, the theoretical approach was referred to papers published in books and academic journals, and technical and current affairs data were studied through the Internet and literature research. The instability and uncertainty of the international order and security environment in the 21st century brought about a change in the security paradigm. Human security emerged as the protection target of security was expanded to individual humans, and emerging security was emerging as the security area expanded. Emerging security threatsthat have different characteristicsfrom traditionalsecurity threats are expressed in various ways, such as cyber threats, new infectious disease threats, terrorist threats, and abnormal climate threats. First, the policy and strategic response to respond to emerging security threats is integrated national crisis management based on artificial intelligence applying the concept of Foresight. Second, it is to establish network-based national crisis management smart governance. Third, it is to maintain the agile resilience of the concept of Agilience. Fourth, an integrated response system that integrates national power elements and national defense elements should be established.

Preliminary Feasibility Study for Water Resources Policy Effect Analysis Direction (수자원분야 예비타당성 조사 정책효과 분석 방향)

  • Seong, Yeonjeong;Choi, Seungan;Kwon, Hyun-Han;Jung, Younghun
    • Journal of Korean Society of Disaster and Security
    • /
    • v.14 no.3
    • /
    • pp.1-16
    • /
    • 2021
  • Recently, large-scale projects are required in the water resources sector considering safety and publicitythe due to uncertainty of securing water resources and changes in the ecological environment by climate change. Among these large-scale projects, the projects that fall under the preliminary feasibility study are determined by comprehensive analysis based on economic analysis, policy analysis, and balanced regional development analysis. However, most of the results of the preliminary feasibility study showed a tendency to depend heavily on economic analysis. For this reason, projects in non-metropolitan areas sometimes fail in the preliminary feasibility study. To supplement this point, the Korea Development Institute revised the standard guidelines for preliminary feasibility studies for water resources sector projects that place a high weight on policy feasibility analysis. Therefore, the objective of this study is to analyze the cases of the preliminary feasibility study conducted previously and to suggest the direction of policy analysis in the preliminary feasibility study for water resources sector projects. For this, we analyze preliminary feasibility studies conducted for 18 years from 2002 to 2019, and suggest direction of policy analysis method using the benefit items not included in the economic analysis.

Directions towards sustainable agricultural systems in Korea

  • Kim, Chang-Gil
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.3-3
    • /
    • 2017
  • The question of how to establish sustainable agricultural systems has become as prominent as questions related to water, energy and climate change. High input/high output agriculture has brought with it many adverse effects; the massive deterioration of soil and water in both quantity and quality, increased greenhouse gas emissions and an increased prevalence of unsafe foods. Additionally, urbanization and climate change has worsened the shortage of farmland and reduced the supply of agricultural water. Given these challenges, maintaining, conserving and efficiently using agri-environmental resources, through fostering of sustainable agriculture, have emerged as key tasks in solving these problems. What is needed therefore is research, based on systematic and comprehensive empirical analyses, that can propose plans and methods for establishing an appropriate sustainable agricultural system. The empirical analysis of sustainable agricultural system is approached separately from economic, environmental and social aspects. An analysis of environment effect reveals that the available phosphate level is 1.3~2.1 times greater than the optimal amount in rice paddies, upland fields and orchards. Further examination has revealed that the excess nutrient is polluting both ground water and surface water. Analytical results for economic feasibility show that factors of production have been invested heavily in the rice crop. Under these conditions, sustainable agriculture, including low-input agriculture, appears to be a possible alternative that will facilitate simultaneous improvements in both economic feasibility and environment effects. Analysis results for sociality reveal that social factors include the value of producer, association and interior networks. Social conditions are comprised of leadership, consumers' awareness, education and conflict solutions. In addition, analysis as to the degree investments contribute to improving agricultural value added has revealed that the direct payment program is the most effective instrument. Experts confirm that economic feasibility can be improved by scientific and well-reasoned nutrient management on the basis of soil testing. Farmers pointed to 'economic factors' as being the largest obstacle to switching to the practice of sustainable agriculture. They also indicate 'uncertainty with regards to sustainable agriculture technology' as an impediment to practicing sustainable agriculture. Even so, farmers who believe environmental and regional issues to be the most pressing problems have expanded their practice of sustainable agriculture. The keys to establishing sustainable agriculture system are classified into the following four aspects. Firstly, from an economic aspect, the research indicates that agricultural policy needs to be integrated with environmental policy and that the function of market making based on the value chain needs to be revitalized. Secondly, from an environmental aspect, there is a need for an optimal resource management system to be established in the agricultural sector. In addition, sustainable agriculture practice will need to be extended with attendant environmentally-friendly and sustainable intensive technology also requiring further development. Thirdly, from a social aspect, green agriculture management needs to be fostered, technology and education extended, and social conflict mediated. Lastly, from a governance aspect, it will be necessary to strengthen good governance, assign and share suitable roles and responsibilities, build a cooperation system and utilize community supported agriculture.

  • PDF

Balancing Water Supply Reliability, Flood Hazard Mitigation and Environmental Resilience in Large River Systems

  • Goodwin, Peter
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.1-1
    • /
    • 2016
  • Many of the world's large ecosystems are severely stressed due to population growth, water quality and quantity problems, vulnerability to flood and drought, and the loss of native species and cultural resources. Consequences of climate change further increase uncertainties about the future. These major societal challenges must be addressed through innovations in governance, policy, and ways of implementing management strategies. Science and engineering play a critical role in helping define possible alternative futures that could be achieved and the possible consequences to economic development, quality of life, and sustainability of ecosystem services. Science has advanced rapidly during the past decade with the emergence of science communities coalescing around 'Grand Challenges' and the maturation of how these communities function has resulted in large interdisciplinary research networks. An example is the River Experiment Center of KICT that engages researchers from throughout Korea and the world. This trend has been complemented by major advances in sensor technologies and data synthesis to accelerate knowledge discovery. These factors combine to allow scientific debate to occur in a more open and transparent manner. The availability of information and improved communication of scientific and engineering issues is raising the level of dialogue at the science-policy interface. However, severe challenges persist since scientific discovery does not occur on the same timeframe as management actions, policy decisions or at the pace sometimes expected by elected officials. Common challenges include the need to make decisions in the face of considerable uncertainty, ensuring research results are actionable and preventing science being used by special interests to delay or obsfucate decisions. These challenges are explored in the context of examples from the United States, including the California Bay-Delta system. California transfers water from the wetter northern part of the state to the drier southern part of the state through the Central Valley Project since 1940 and this was supplemented by the State Water Project in 1973. The scale of these activities is remarkable: approximately two thirds of the population of Californians rely on water from the Delta, these waters also irrigate up to 45% of the fruits & vegetables produced in the US, and about 80% of California's commercial fishery species live in or migrate through the Bay-Delta. This Delta region is a global hotspot for biodiversity that provides habitat for over 700 species, but is also a hotspot for the loss of biodiversity with more than 25 species currently listed by the Endangered Species Act. Understanding the decline of the fragile ecosystem of the Bay-Delta system and the potential consequences to economic growth if water transfers are reduced for the environment, the California State Legislature passed landmark legislation in 2009 (CA Water Code SS 85054) that established "Coequal goals of providing a more reliable water supply for California and protecting, restoring, and enhancing the Delta ecosystem". The legislation also stated that "The coequal goals shall be achieved in a manner that protects and enhances the unique cultural, recreational, natural resource, and agricultural values of the Delta as an evolving place." The challenges of integrating policy, management and scientific research will be described through this and other international examples.

  • PDF

A Study on Disaster Safety Management Policy Using the 4th Industrial Revolution and ICBMS (4차 산업혁명과 ICBMS를 활용한 재난안전관리에 관한 연구)

  • Kang, Heau-Jo
    • Journal of Digital Contents Society
    • /
    • v.18 no.6
    • /
    • pp.1213-1216
    • /
    • 2017
  • Recently due to the increasing uncertainty of the disaster environment caused by climate change the effects of disasters have become larger due to the confluence and solidification diversification into disaster type and secondary damage. In this paper, we apply ICBMS through intelligent information technology and big data analysis to all processes of disaster safety management to minimize human, social, economic and environment damage from accidents or disasters, and prevention by control technology preparation by education and training expansion to remember by body, response by advanced technology of disaster response unmanned technology restoration by creation of local community environment ecosystem, investigation and analysis by intelligent information technology learn about disaster safety management 4.0. In addition, technical limitation and problems in the $4^{th}$ industrial revolution and the application of big data were analyzed and suggested alternatives and strategies to overcome.

Surface Cover Effect for Reducing Nitrogen Load in Organic Farming Fields using APEX Model (APEX 모형을 이용한 유기농경지에서의 질소 부하량 저감을 위한 지표피복 효과)

  • So, Hyunchul;Jang, Taeil;Kim, Dong-Hyeon;Seol, Dong-Mun;Yoon, Kwangsik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.5
    • /
    • pp.55-67
    • /
    • 2018
  • The objectives of this study were to monitor organic farming upland compared with conventional upland field and to evaluate nutrient loads reduction of surface cover effect with long-term historical climate data. APEX(Agricultural Policy Environmental eXtender) model was validated with experimental data and used for assessing surface cover scenarios for 30-year simulation periods. The validated values of RMSE(Root Mean Square Error), RMAE(Root Mean Absolute Error), $R^2$ and E(Nash-Sutcliffe efficiency) for runoff were 1.17-1.37 mm/day, 0.28-0.45 mm/day, 0.88-0.90 and 0.82-0.94 in two treatments, respectively. Those for water quality (nitrogen) were 0.05-0.16 kg/ha, 0.52-0.75 kg/ha, 0.67-0.72 and 0.32-0.70 in two treatments, respectively, and therefore the validated model showed good agreement with the observed runoff and nitrogen load for the study period. When decreasing the surface cover rate of organic farming field to 75%, 50%, 25%, and 0% (conventional field), average annual runoff increased by 7%, 15%, 23% and 31%, respectively. Under same condition of decreasing the surface cover rate, average annual nitrogen loads increased by 1.4 times, 1.7 times, 2.0 times, and 2.3 times compared with organic farming field, respectively. This study showed that it is possible to present an appropriate surface cover ratio to maintain conventional production and minimize nonpoint sources pollution for organic farming system, although long-term monitoring is needed to determine its effects on environmental concerns, crop competition, and other uncertainty.

Warm Season Hydro-Meteorological Variability in South Korea Due to SSTA Pattern Changes in the Tropical Pacific Ocean Region (열대 태평양 SSTA 패턴 변화에 따른 우리나라 여름철 수문 변동 분석)

  • Yoon, Sun-kwon;Kim, Jong-Suk;Lee, Tae-Sam;Moon, Young-IL
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.1
    • /
    • pp.49-63
    • /
    • 2016
  • In this study, we analyzed the effects of regional hydrologic variability during warm season (June-September) in South Korea due to ENSO (El $Ni{\tilde{n}}o$-Southern Oscillation) pattern changes over the Tropical Pacific Ocean (TPO). We performed composite analysis (CA) and statistical significance test by Student's t-test using observed hydrologic data (such as, precipitation and streamflow) in the 113 sub-watershed areas over the 5-Major River basin, in South Korea. As a result of this study, during the warm-pool (WP) El $Ni{\tilde{n}}o$ year shows a significant increasing tendency than normal years. Particularly, during the cold-tongue (CT) El $Ni{\tilde{n}}o$ decaying years clearly decreasing tendency compared to the normal years was appeared. In addition, the La $Ni{\tilde{n}}a$ years tended to show a slightly increasing tendency and maintain the average year state. In addition, from the result of scatter plot of the percentage anomaly of hydrologic variables during warm season, it is possible to identify the linear increasing tendency. Also the center of the scatter plot shows during the WP El $Ni{\tilde{n}}o$ year (+17.93%, +26.99%), the CT El $Ni{\tilde{n}}a$ year (-8.20%, -15.73%), and the La $Ni{\tilde{n}}a$ year (+8.89%, +15.85%), respectively. This result shows a methodology of the tele-connection based long-range water resources prediction for reducing climate forecasting uncertainty, when occurs the abnormal SSTA (such as, El $Ni{\tilde{n}}o$ and La $Ni{\tilde{n}}a$) phenomenon in the TPO region. Furthermore, it can be a useful data for water managers and end-users to support long-range water-related policy making.