• Title/Summary/Keyword: Climate impacts

Search Result 609, Processing Time 0.032 seconds

Climate Change, Agricultural Productivity, and their General Equilibrium Impacts: A Recursive Dynamic CGE Analysis (기후변화에 따른 농업생산성 변화의 일반균형효과 분석)

  • Kwon, Oh-Sang;Lee, Hanbin
    • Environmental and Resource Economics Review
    • /
    • v.21 no.4
    • /
    • pp.947-980
    • /
    • 2012
  • This study analyzes the long-run impacts of climate change on Korean agriculture and economy. We estimate the impacts of climate change on the productivities of major agricultural products including rice, dairy and livestock using both a simulation approach and a semiparametric econometric model. The former predicts a decline in productivity while the latter predicts an increase in productivity due to climate change, especially for rice. A recursive dynamic CGE model is used to analyze the general equilibrium impacts of productivity change under the two different scenarios, derived from the two productivity analysis approaches. The loss of GDP in 2050 is 0.2% or 0.02% of total GDP depending on the scenario. It is shown that the losses in dairy and livestock sectors are larger than that in rice sector, although the losses in those two non-rice sectors have been ignored by most existing works.

  • PDF

Predicting Impacts of Climate Change on Sinjido Marine Food Web (기후변화로 인한 신지도 근해 해양먹이망 변동예측)

  • Kang, Yun-Ho;Ju, Se-Jong;Park, Young-Gyu
    • Ocean and Polar Research
    • /
    • v.34 no.2
    • /
    • pp.239-251
    • /
    • 2012
  • The food web dynamics in a coastal ecosystem of Korea were predicted with Ecosim, a trophic flow model, under various scenarios of primary productivity due to ocean warming and ocean acidification. Changes in primary productivity were obtained from an earth system model 2.1 under A1B scenario of IPCC $CO_2$ emission and replaced for forcing functions on the phytoplankton group during the period between 2020 and 2100. Impacts of ocean acidification on species were represented in the model for gastropoda, bivalvia, echinodermata, crustacean and cephalopoda groups with effect sizes of conservative, medium and large. The model results show that the total biomass of invertebrate and fish groups decreases 5%, 11~28% and 14~27%, respectively, depending on primary productivity, ocean acidification and combined effects. In particular, the blenny group shows zero biomass at 2080. The zooplankton group shows a sudden increase at the same time, and finally reaches twice the baseline at 2100. On the other hand, the ecosystem attributes of the mean trophic level of the ecosystem, Shannon's H and Kempton's Q indexes show a similar reduction pattern to biomass change, indicating that total biomass, biodiversity and evenness shrink dynamically by impacts of climate change. It is expected from the model results that, after obtaining more information on climate change impacts on the species level, this study will be helpful for further investigation of the food web dynamics in the open seas around Korea.

A Study about the Impact of Atmospheric Environmental Changes by Urban Development on Human Health (도시개발에 따른 대기환경 변화가 건강에 미치는 영향연구)

  • Kim, Jea-Chul;Lee, Chong-Bum;Cheon, Tae-Hun;Jang, Yun-Jung
    • Journal of Environmental Impact Assessment
    • /
    • v.19 no.1
    • /
    • pp.15-28
    • /
    • 2010
  • Because deterioration of air quality and urban heat island directly harm health of citizens, Health Impact Assessment (HIA) and Environmental Impact Assessment (EIA) for urban development projects needs to conduct analysis of their impacts objectively. This study aims to review appropriate methods for assessment of air quality used at each stage of urban development and to investigate prediction and assessment methods of urban heat island. In addition, by evaluating impacts of climate change following supposed urban construction performed in the central area of Korea on public health, it examines usefulness of HIA for urban construction. When urban heat island prediction and HIA method suggested in this study are applied to an imaginary city, they predict urban heat island properly and the impacts of climate changes on public health inside the city could be determined clearly by calculating life-climate index and bio-climate index related with thermal environment from the model.

Antarctic Marine Microorganisms and Climate Change: Impacts and Feedbacks

  • Marchant Harvey J.;Davidson Andrew T.;Wright Simon W.
    • Ocean and Polar Research
    • /
    • v.23 no.4
    • /
    • pp.401-410
    • /
    • 2001
  • Global climate change will alter many such properties of the Southern Ocean as temperature, circulation, stratification, and sea-ice extent. Such changes are likely to influence the species composition and activity of Antarctic marine microorganisms (protists and bacteria) which playa major role in deter-mining the concentration of atmospheric $CO_2$ and producing precursors of cloud condensation nuclei. Direct impacts of climate change on Antarctic marine microorganisms have been determined for very few species. Increasing water temperature would be expected to result in a southward spread of pelagic cyanobacteria, coccolithophorids and others. Growth rates of many species would be expected to increase slightly but nutrient limitation, especially micronutrients, is likely to result in a negligible increase in biomass. The extent of habitats would be reduced for those organisms presently living close to the upper limit of their thermal tolerance. Increased UVB irradiance is likely to favour the growth of those organisms tolerant of UVB and may change the trophic structure of marine communities. Indirect effects, especially those as a consequence of a diminution of the amount of sea-ice and increased upper ocean stratification, are predicted to lead to a change in species composition and impacts on both trophodynamics and vertical carbon flux.

  • PDF

Spatial Changes in Work Capacity for Occupations Vulnerable to Heat Stress: Potential Regional Impacts From Global Climate Change

  • Kim, Donghyun;Lee, Junbeom
    • Safety and Health at Work
    • /
    • v.11 no.1
    • /
    • pp.1-9
    • /
    • 2020
  • Background: As the impact of climate change intensifies, exposure to heat stress will grow, leading to a loss of work capacity for vulnerable occupations and affecting individual labor decisions. This study estimates the future work capacity under the Representative Concentration Pathways 8.5 scenario and discusses its regional impacts on the occupational structure in the Republic of Korea. Methods: The data utilized for this study constitute the local wet bulb globe temperature from the Korea Meteorological Administration and information from the Korean Working Condition Survey from the Occupational Safety and Health Research Institute of Korea. Using these data, we classify the occupations vulnerable to heat stress and estimate future changes in work capacity at the local scale, considering the occupational structure. We then identify the spatial cluster of diminishing work capacity using exploratory spatial data analysis. Results: Our findings indicate that 52 occupations are at risk of heat stress, including machine operators and elementary laborers working in the construction, welding, metal, and mining industries. Moreover, spatial clusters with diminished work capacity appear in southwest Korea. Conclusion: Although previous studies investigated the work capacity associated with heat stress in terms of climatic impact, this study quantifies the local impacts due to the global risk of climate change. The results suggest the need for mainstreaming an adaptation policy related to work capacity in regional development strategies.

Economic Impacts of Abnormal Climate on Total Output of Red Pepper (이상기후에 따른 건고추 생산농가의 총수입 변화 계측)

  • Cho, Jae-Hwan;Suh, Jeong-Min;Kang, Jum-Soon;Hong, Chang-Oh;Lim, Woo-Taik;Shin, Hyun-Moo;Kim, Woon-Won
    • Journal of Environmental Science International
    • /
    • v.23 no.4
    • /
    • pp.707-713
    • /
    • 2014
  • The purpose of this article is analyzing the economic impacts of abnormal climate on total revenue of red pepper in Korea, with employing the equilibrium displacement model. Our simulation results show the rate of yield change, price change, and total revenue change according to the climate change scenarios. In th case of by RCP 8.5 Scenario, red pepper production volume would be expected to decrease by 77.2% compared to 2012 while price increasing by 29.6%. As a result, total revenue to be returned to farmers would be reduced by 47.6% than it was in 2012. In contrast, total revenue would be expected to decline by 29.6% according to RCP 4.5 scenario.

Evaluating the impacts of extreme agricultural droughts under climate change in Hung-up watershed, South Korea

  • Sadiqi, Sayed Shajahan;Hong, Eun-Mi;Nam, Wan-Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.143-143
    • /
    • 2021
  • Climate change indicators, mainly frequent drought which has happened since the drought of 1994, 1995, and 2012 causing the devastating effect to the agricultural sector, and could be more disruptive given the context of climate change indicators by increasing the temperature and more variable and extreme precipitation. Changes in frequency, duration, and severity of droughts will have enormous impacts on agriculture production and water management. Since both the possibility of drought manifestation and substantial yield losses, we are propositioning an integrated method for evaluating past and future agriculture drought hazards that depend on models' simulations in the Hung-up watershed. to discuss the question of how climate change might influence the impact of extreme agriculture drought by assessing the potential changes in temporal trends of agriculture drought. we will calculate the temporal trends of future drought through drought indices Standardized Precipitation Evapotranspiration Index, Standardized Precipitation Index, and Palmer drought severity index by using observed data of (1991-2020) from Wonju meteorological station and projected climate change scenarios (2021-2100) of the Representative Concentration Pathways models (RCPs). expected results confirmed the frequency of extreme agricultural drought in the future projected to increase under all studied RCPs. at present 100 years drought is anticipated to happen since the result showing under RCP2.6 will occur every 24 years, RCP4.5 every 17 years, and RCPs8.5 every 7 years, and it would be double in the largest warming scenarios. On another side, the result shows unsupportable water management, could cause devastating consequences in both food production and water supply in extreme events. Because significant increases in the drought magnitude and severity like to be initiate at different time scales for each drought indicator. Based on the expected result that the evaluating the impacts of extreme agricultural droughts and recession could be used for the development of proactive drought risk management, policies for future water balance, prioritize sustainable strengthening and mitigation strategies.

  • PDF

Review on Environmental Impact Assessment and Adaptation Strategies for Climate Change (기후변화에 따른 적응대책과 환경영향평가)

  • Choi, Kwang-Ho
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.2
    • /
    • pp.249-256
    • /
    • 2011
  • Causing by green house gas emission, global warming is being accelerated significantly. This global warming cause world climate to change quiet different than before and we call this phenomenon is Climate Change. Environmental Impact Assessment being implemented in Korea is to prevent predicted environmental impacts from deteriorating within the domestic information and situation. As the climate change is getting severe, new meteorological records can be occurred which is exceeded existing statistical data. According to KMA(Korea Meteorological Administration) data, maximum value of precipitation and temperature in many regions changed with new data within last decade. And these events accompanied with landslides and flooding, and these also affected on water quality in rivers and lakes. According to impacts by climate change, disasters and accidents from heavy rain are the most apprehensive parts. And water pollution caused by overflowed non-point sources during heavy rain fall, fugitive dust caused by long-term drought, and sea level rise and Tsunami may affect on seaside industrial complex should be worth consideration. In this review, necessity of mutual consideration with influences of climate change was considered adding on existing guideline.

Impacts of Carbon Neutrality and Air Quality Control on Near-term Climate Change in East Asia (탄소중립과 대기질 개선 정책이 동아시아 근 미래 기후변화에 미치는 영향)

  • Youn-Ah Kim;Jung Choi;Seok-Woo Son
    • Atmosphere
    • /
    • v.33 no.5
    • /
    • pp.505-517
    • /
    • 2023
  • This study investigates the impacts of carbon neutrality and air quality control policies on near-term climate change in East Asia, by examining three Shared Socioeconomic Pathways (SSPs) scenarios from five climate models. Specifically, low carbon and strong air quality control scenario (SSP1-1.9), high carbon and weak air quality control scenario (SSP3-7.0), and high carbon and strong air quality control scenario (SSP3-7.0-lowNTCF) are compared. For these scenarios, the near-term climate (2045-2054 average) changes are evaluated for surface air temperature (SAT), hot temperature extreme intensity (TXx), and hot temperature extreme frequency (TX90p). In all three scenarios, SAT, TXx, and TX90p are projected to increase in East Asia, while carbon neutrality reduces the increasing rate of SAT and hot temperature extremes. Air quality control strengthens the warming rate. These opposed mitigation effects are robustly forced in all model simulations. Nonetheless, the impact of carbon neutrality overcomes the impact of air quality control. These results suggest that fast carbon neutrality, more effective than an air quality control policy, is necessary to slowdown future warming trend in East Asia.