Browse > Article
http://dx.doi.org/10.4217/OPR.2012.34.2.239

Predicting Impacts of Climate Change on Sinjido Marine Food Web  

Kang, Yun-Ho (Ocean Technology Research Institute, Korean Ocean Search Salvage Company)
Ju, Se-Jong (Deep-sea and Seabed Resources Research Division, KIOST)
Park, Young-Gyu (Ocean Circulation and Climate Research Division, KIOST)
Publication Information
Ocean and Polar Research / v.34, no.2, 2012 , pp. 239-251 More about this Journal
Abstract
The food web dynamics in a coastal ecosystem of Korea were predicted with Ecosim, a trophic flow model, under various scenarios of primary productivity due to ocean warming and ocean acidification. Changes in primary productivity were obtained from an earth system model 2.1 under A1B scenario of IPCC $CO_2$ emission and replaced for forcing functions on the phytoplankton group during the period between 2020 and 2100. Impacts of ocean acidification on species were represented in the model for gastropoda, bivalvia, echinodermata, crustacean and cephalopoda groups with effect sizes of conservative, medium and large. The model results show that the total biomass of invertebrate and fish groups decreases 5%, 11~28% and 14~27%, respectively, depending on primary productivity, ocean acidification and combined effects. In particular, the blenny group shows zero biomass at 2080. The zooplankton group shows a sudden increase at the same time, and finally reaches twice the baseline at 2100. On the other hand, the ecosystem attributes of the mean trophic level of the ecosystem, Shannon's H and Kempton's Q indexes show a similar reduction pattern to biomass change, indicating that total biomass, biodiversity and evenness shrink dynamically by impacts of climate change. It is expected from the model results that, after obtaining more information on climate change impacts on the species level, this study will be helpful for further investigation of the food web dynamics in the open seas around Korea.
Keywords
climate change; ocean acidification; food web dynamics; trophic flow model;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Kirby R, Beaugrand G, Lindley J (2009) Synergistic effects of climate and fishing in a marine ecosystem. Ecosystems 12:548-561   DOI
2 Larkin PA, Gazey W (1982) Application of ecological simulation models to management of tropical multispecies of fisheries. In: Pauly D, Murphy GI (eds) Theory and Management of Tropical Fisheries, ICLARM Conf, pp 123-140
3 Mackinson S, Daskalov G, Heymans JJ, Neira S, Arancibia H, Zetina-Rejon M, Jiang H, Cheng HQ, Coll M, Arreguin-Sanchez F, Keeble K, Shannon L (2009) Which forcing factors fit? Using ecosystem models to investigate the relative influence of fishing and changes in primary productivity on the dynamics of marine ecosystems. Ecol Model 220:2972-2987   DOI   ScienceOn
4 Murray AG, Parslow JS (1999) Modelling of nutrient impacts in Port Phillip Bay - a semi-enclosed marine Australian ecosystem. Mar Freshwater Res 50:597-611   DOI
5 Nakicenovic N, Swart R (2000) Special Report on Emissions Scenarios: A special report of Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, 612 p
6 Parsons TR, Maita Y, Lalli CM (1984) A manual of chemical and biological methods for seawater analysis. Pergamon Press, Oxford, 173 p
7 Pitcher TJ (2008) The sea ahead: challenges to marine biology from seafood sustainability. Hydrobiologia 606:161-185   DOI
8 Brown CJ, Fulton EA, Hobday AJ, Matear RJ, Possingham HP, Bulman C, Christensen V (2010) Effects of climate driven primary production change on marine food webs: Implications for fisheries and conservation. Glob Change Biol 16:1194-1212   DOI   ScienceOn
9 Byrne RH, Mecking S, Feely RA, Liu X (2010) Direct observations of basin-wide acidification of the North Pacific Ocean. Geophys Res Lett 37:L02601   DOI   ScienceOn
10 Caldeira K, Wickett ME (2003) Oceanography: Anthropogenic carbon and ocean pH. Nature 425:365-365   DOI   ScienceOn
11 Cheung WWL, Sumaila R (2007) Trade-offs between conservation and socio-economic objectives in managing a tropical marine ecosystem. Ecol Econ 66(1):193-210
12 Spellerberg IF, Fedor PJ (2003) A tribute to Claude Shannon (1916-2001) and a plea for more rigorous use of species richness, species diversity and the 'Shannon-Wiener' Index. Global Ecol Biogeogr 12:177-179   DOI   ScienceOn
13 Sarmiento JL, Slater RD, Dunne J, Gnanadesikan A, Hiscock MR (2010) Efficiency of small scale carbon mitigation by patch iron fertilization. Biogeosciences 7:3593-3624   DOI
14 Samhouri JF, Levin PS, Harvey CJ (2009) Quantitative evaluation of marine ecosystem indicator performance using food web models. Ecosystems 12:1283-1298   DOI
15 Sparre P (1991) Introduction to multispecies virtual population analysis. ICES Mar Sci 193:12-21
16 Travers M, Shin YJ, Jennings S, Cury P (2007) Towards end-to-end models for investigating the effects of climate and fishing in marine ecosystems. Prog Oceanogr 75:751-770   DOI   ScienceOn
17 Ulanowicz RE (1986) Growth and development: Ecosystem phenomenology. Springer Verlag, New York, 203 p
18 Walters C, Christensen V, Pauly D (1997) Structuring dynamics models of exploited ecosystems from trophic mass-balance assessments. Rev Fish Biol Fish 7:139-172   DOI
19 Watters GM, Olson RJ, Francis RC (2003) Physical forcing and the dynamics of the pelagic cosystem in the eastern tropical Pacific: simulations with ENSO-scale and global-warming climate drivers. Can J Fish Aquat Sci 60:1161-1175   DOI   ScienceOn
20 Polovina JJ (1984) Model of a coral reef ecosystem. Part I. The ECOPATH model and its application to French Frigate Shoals. Coral Reefs 3:1-11   DOI
21 Richardson AJ, Schoeman DS (2004) Climate impact on plankton ecosystems in the Northeast Atlantic. Science 305:1609-1612   DOI   ScienceOn
22 Sabine CL, Feely RA, Gruber N, Key RM, Lee K, Bullister JL,Wanninkhof R (2004) The oceanic sink for anthropogenic CO2. Science 305:367-371   DOI   ScienceOn
23 Christensen V, Ferdana Z, Steenbeek J (2009) Spatial optimization of protected area placement incorporating ecological, social and economical criteria. Ecol Model 220(19):2583-2593   DOI   ScienceOn
24 Christensen V, Walters CJ (2004) Trade-offs in ecosystemscale optimization of fisheries management policies. Bull Mar Sci 74:549-562
25 Cloern JE, Jassby AD (2008) Complex seasonal patterns of primary producers at the land-sea interface. Ecol Lett 11:1294-1303   DOI   ScienceOn
26 Coll M, Palomera I, Tudela S, Dowd M (2008) Food-web dynamics in the South Catalan Sea ecosystem(NW Mediterranean) for 1978-2003. Ecol Model 217(1-2):95-116   DOI   ScienceOn
27 Coll M, Santojanni A, Palomera I, Arneri E (2009) Food-web changes in the Adriatic Sea over the last three decades. Mar Ecol-Prog Ser 381:17-37   DOI
28 Feely RA, Sabine CL, Hernandez-Ayon JM, Ianson D, Hales B (2008) Evidence for upwelling of corrosive "acidified" water onto the continental shelf. Science 320:1490-1492   DOI   ScienceOn
29 Fulton EA, Smith ADM (2004) Lessons learnt from a comparison of three ecosystem models for Port Phillip Bay, Australia. Afr J Mar Sci 26:219-243   DOI
30 강윤호 (2003) 방죽포 쇄파대생태계의 수용력과 수산자원방류. 한국수산과학회지 36(6):669-675
31 강윤호 (2004) NETWRK를 이용한 쇄파대 생태계의 탄소수지와 네트웍해석. 한국수산과학회지 37(1):33-43
32 Kempton RA, Taylor LR (1976) Models and statistics for species diversity. Nature 262:818-820   DOI   ScienceOn
33 Harley CDG, Randall Hughes A, Hultgren KM et al. (2006) The impacts of climate change in coastal marine systems. Ecol Lett 9:228-241   DOI   ScienceOn
34 Hays GC, Richardson AJ, Robinson C (2005) Climate change and marine plankton. Trends Ecol Evol 20:337-344   DOI   ScienceOn
35 IPCC (2007) Climate Change 2007: Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, IPCC Synthesis report, 104 p
36 강윤호 (2005) 광양만 예비 영양류 모형. 한국수산과학회지 38(3):184-195
37 강윤호 (2011) 영양흐름모형을 이용한 1994년 신지도 해양생태계 해석. 한국해양학회지 바다 16(4):180-195
38 이성일 (2008) 생태계 모델링에 의한 바다목장의 자원평가 연구. 이학박사 학위논문, 부경대학교, 147 p
39 장성현 (2008) Ecopath 모델을 이용한 남양호와 낙동강 하류 생태계의 영양구조와 에너지 흐름. 이학박사 학위논문, 부경대학교, 113 p
40 장창익, 윤상철 (2003) 남서부 동해에서 1970년대의 기후체제 전환이 생태계의 구조에 미친 영향. 한국수산과학회지 36(4):389-401
41 전라남도 (1994) '93년도 연안어장의 입체적 복합이용을 위한 어장생산력 조사에 관한 연구 최종보고서. 여수수산대학교 수산과학연구원, 700 p
42 Ainsworth CH, Samhouri JF, Busch DS, Cheung WWL, Dunne J, Okey TA (2011) Potential impacts of climate change on Northeast Pacific marine foodwebs and fisheries. ICES J Mar Sci 68:1217-1229   DOI   ScienceOn
43 Ainsworth CH, Pitcher TJ (2006) Modifying Kempton's species diversity index for use with ecosystem simulation models. Ecol Indic 6(3):623-630   DOI   ScienceOn