• Title/Summary/Keyword: Climate changes

Search Result 1,865, Processing Time 0.034 seconds

Assessment of the Impact of Climate Change on Marine Ecosystem in the South Sea of Korea (기후변화가 남해 해양생태계에 미치는 영향평가)

  • Ju, Se-Jong;Kim, Se-Joo
    • Ocean and Polar Research
    • /
    • v.34 no.2
    • /
    • pp.197-199
    • /
    • 2012
  • According to the IPCC climate change scenario (A1B scenario), the surface seawater temperature of the South Sea of Korea by 2100 may be $2-3.5^{\circ}C$ higher than at present, and seawater pH may decrease from 8.1 to 7.8, due to the increase in atmospheric $CO_2$, which is predicted to increase in concentration from 380 to 750 ppm. These changes may not only intensify the strength of typhoons/storm surges but also affect the function and structure the marine ecosystem. In order to assess the impact of climate change on the marine ecosystem in Korean waters, the project named the 'Assessment of the impact of climate change on marine ecosystem in the South Sea of Korea' has been supported by the Ministry of Land, Transport and Maritime Affairs, from 2008. The goal of this project is to enhance our ability to adapt and prepare for the future environmental changes through the reliable predictions based on the knowledge obtained from projects like this. In this respect, this project is being conducted to investigate the effects of climate/marine environment changes (ocean warming and acidification), and to predict future changes of the structure and function of the ecosystem in the South Sea of Korea. This special issue contains 6 research articles, which are the highlights of the studies carried out through this project.

Analysis of the Costs of Climate Change Damage to Laver and Sea Mustard Aquaculture in Korea (김·미역 양식의 기후변화 피해비용 분석)

  • Yu-Jin Yun;Bong-Tae Kim
    • The Journal of Fisheries Business Administration
    • /
    • v.54 no.2
    • /
    • pp.045-058
    • /
    • 2023
  • This study aims to analyze the cost of climate change damages to laver and sea mustard aquaculture, which are considered to be highly vulnerable to climate change in Korea. For this purpose, the correlation between aquaculture production and climate factors such as water temperature, salinity, air temperature, and precipitation was estimated using a panel regression model. The SSP scenario was applied to predict the changes in production and damage costs due to changes in future climate factors. As a result of the analysis, laver production is predicted to decrease by 18.0-27.2% in 2050 and 20.6-61.6% in 2100, and damage costs are predicted to increase from 29.7-50.8 billion KRW in 2050 to 35.7-116.1 billion KRW in 2100. Sea mustard production is projected to decrease by 24.5-37.2% in 2050 and 24.0-34.5% in 2100, with similar damage costs of 41.1-61.8 billion KRW and 41.1-58.6 billion KRW, respectively. These damage costs are expected to occur in the short term as damage caused by fishery disasters such as high temperatures, and in the long term as a decrease in production due to changes in aquaculture sites. Therefore, measures such as strengthening the forecasting system to prevent high-temperature damage, developing high-temperature-resistant varieties, and relocating fishing grounds in response to changes in aquaculture sites will be necessary.

Assessing the Impact of Climate Change on Water Resources: Waimea Plains, New Zealand Case Example

  • Zemansky, Gil;Hong, Yoon-Seeok Timothy;Rose, Jennifer;Song, Sung-Ho;Thomas, Joseph
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.18-18
    • /
    • 2011
  • Climate change is impacting and will increasingly impact both the quantity and quality of the world's water resources in a variety of ways. In some areas warming climate results in increased rainfall, surface runoff, and groundwater recharge while in others there may be declines in all of these. Water quality is described by a number of variables. Some are directly impacted by climate change. Temperature is an obvious example. Notably, increased atmospheric concentrations of $CO_2$ triggering climate change increase the $CO_2$ dissolving into water. This has manifold consequences including decreased pH and increased alkalinity, with resultant increases in dissolved concentrations of the minerals in geologic materials contacted by such water. Climate change is also expected to increase the number and intensity of extreme climate events, with related hydrologic changes. A simple framework has been developed in New Zealand for assessing and predicting climate change impacts on water resources. Assessment is largely based on trend analysis of historic data using the non-parametric Mann-Kendall method. Trend analysis requires long-term, regular monitoring data for both climate and hydrologic variables. Data quality is of primary importance and data gaps must be avoided. Quantitative prediction of climate change impacts on the quantity of water resources can be accomplished by computer modelling. This requires the serial coupling of various models. For example, regional downscaling of results from a world-wide general circulation model (GCM) can be used to forecast temperatures and precipitation for various emissions scenarios in specific catchments. Mechanistic or artificial intelligence modelling can then be used with these inputs to simulate climate change impacts over time, such as changes in streamflow, groundwater-surface water interactions, and changes in groundwater levels. The Waimea Plains catchment in New Zealand was selected for a test application of these assessment and prediction methods. This catchment is predicted to undergo relatively minor impacts due to climate change. All available climate and hydrologic databases were obtained and analyzed. These included climate (temperature, precipitation, solar radiation and sunshine hours, evapotranspiration, humidity, and cloud cover) and hydrologic (streamflow and quality and groundwater levels and quality) records. Results varied but there were indications of atmospheric temperature increasing, rainfall decreasing, streamflow decreasing, and groundwater level decreasing trends. Artificial intelligence modelling was applied to predict water usage, rainfall recharge of groundwater, and upstream flow for two regionally downscaled climate change scenarios (A1B and A2). The AI methods used were multi-layer perceptron (MLP) with extended Kalman filtering (EKF), genetic programming (GP), and a dynamic neuro-fuzzy local modelling system (DNFLMS), respectively. These were then used as inputs to a mechanistic groundwater flow-surface water interaction model (MODFLOW). A DNFLMS was also used to simulate downstream flow and groundwater levels for comparison with MODFLOW outputs. MODFLOW and DNFLMS outputs were consistent. They indicated declines in streamflow on the order of 21 to 23% for MODFLOW and DNFLMS (A1B scenario), respectively, and 27% in both cases for the A2 scenario under severe drought conditions by 2058-2059, with little if any change in groundwater levels.

  • PDF

Changes in Mean Temperature and Warmth Index on the Korean Peninsula under SSP-RCP Climate Change Scenarios (SSP-RCP 기후변화 시나리오 기반 한반도의 평균 기온 및 온량지수 변화)

  • Jina Hur;Yongseok Kim;Sera Jo;Eung-Sup Kim;Mingu Kang;Kyo-Moon Shim;Seung-Gil Hong
    • Atmosphere
    • /
    • v.34 no.2
    • /
    • pp.123-138
    • /
    • 2024
  • Using 18 multi-model-based a Shared Socioeconomic Pathway (SSP) and Representative Concentration Pathways (RCP) climate change scenarios, future changes in temperature and warmth index on the Korean Peninsula in the 21st century (2011~2100) were analyzed. In the analysis of the current climate (1981~2010), the ensemble averaged model results were found to reproduce the observed average values and spatial patterns of temperature and warmth index similarly well. In the future climate projections, temperature and warmth index are expected to rise in the 21st century compared to the current climate. They go further into the future and the higher carbon scenario (SSP5-8.5), the larger the increase. In the 21st century, in the low-carbon scenario (SSP1-2.6), temperature and warmth index are expected to rise by about 2.5℃ and 24.6%, respectively, compared to the present, while in the high-carbon scenario, they are expected to rise by about 6.2℃ and 63.9%, respectively. It was analyzed that reducing carbon emissions could contribute to reducing the increase in temperature and warmth index. The increase in the warmth index due to climate change can be positively analyzed to indicate that the effective heat required for plant growth on the Korean Peninsula will be stably secured. However, it is necessary to comprehensively consider negative aspects such as changes in growth conditions during the plant growth period, increase in extreme weather such as abnormally high temperatures, and decrease in plant diversity. This study can be used as basic scientific information for adapting to climate change and preparing response measures.

Changes in the Tsushima Warm Current and the Impact under a Global Warming Scenario in Coupled Climate Models (기후모델에 나타난 미래기후에서 쓰시마난류의 변화와 그 영향)

  • Choi, A-Ra;Park, Young-Gyu;Choi, Hui Jin
    • Ocean and Polar Research
    • /
    • v.35 no.2
    • /
    • pp.127-134
    • /
    • 2013
  • In this study we investigated changes in the Tsushima Warm Current (TWC) under the global warming scenario RCP 4.5 by analysing the results from the World Climate Research Program's (WCRP) Coupled Model Intercomparison Project Phase 5 (CMIP5). Among the four models that had been employed to analyse the Tsushima Warm Current during the 20th Century, in the CSIRO-Mk3.6.0 and HadGEM2-CC models the transports of the Tsushima Warm Current were 2.8 Sv and 2.1 Sv, respectively, and comparable to observed transport, which is between 2.4 and 2.77 Sv. In the other two models the transports were much greater or smaller than the observed estimates. Using the two models that properly reproduced the transport of the Tsushima Warm Current we investigated the response of the current under the global warming scenario. In both models the volume transports and the temperature were greater in the future climate scenario. Warm advection into the East Sea was intensified to raise the temperature and consequently the heat loss to the air.

Estimation of Future Death Burden of High Temperatures from Climate Change (기후변화로 인한 고온의 미래 사망부담 추정)

  • Yang, Jihoon;Ha, Jongsik
    • Journal of Environmental Health Sciences
    • /
    • v.39 no.1
    • /
    • pp.19-31
    • /
    • 2013
  • Objectives: Elevated temperatures during summer months have been reported since the early 20th century to be associated with increased daily mortality. However, future death impacts of high temperatures resulting from climate change could be variously estimated in consideration of the future changes in historical temperature-mortality relationships, mortality, and population. This study examined the future death burden of high temperatures resulting from climate change in Seoul over the period of 2001-2040. Methods: We calculated yearly death burden attributable to high temperatures stemming from climate change in Seoul from 2001-2040. These future death burdens from high temperature were computed by multiplying relative risk, temperature, mortality, and population at any future point. To incorporate adaptation, we assumed future changes in temperature-mortality relationships (i.e. threshold temperatures and slopes), which were estimated as short-term temperature effects using a Poisson regression model. Results: The results show that climate change will lead to a substantial increase in summer high temperature-related death burden in the future, even considering adaptation by the population group. The yearly death burden attributable to elevated temperatures ranged from approximately 0.7 deaths per 100,000 people in 2001-2010 to about 1.5 deaths per 100,000 people in Seoul in 2036-2040. Conclusions: This study suggests that adaptation strategies and communication regarding future health risks stemming from climate change are necessary for the public and for the political leadership of South Korea.

Implementation of ESGF Data Node for International Distribution of CORDEX-East Asia Regional Climate Data

  • Han, Jeongmin;Choi, Jaewon
    • International Journal of Contents
    • /
    • v.17 no.1
    • /
    • pp.61-70
    • /
    • 2021
  • As the resolution of climate change scenario data applied with regional models increased, Earth System Grid Federation (ESGF) was established around major climate-related organizations to jointly operated and manage large-scale climate data. ESGF developed standard software to provide model output, observation data management, dissemination, and analysis using Peer to Peer (P2P) computing technology. Roles of each institution were divided into index and data nodes. Therefore, ESGF data node was established at APEC Climate Center in Korea on behalf of Asia to share data on climate change scenarios of CORDEX-East Asia (CORDEX-EA) to study climate changes in Eastern Asia. Climate researchers are expected to play a large role in researching causes of global warming and responding to climate change by providing CORDEX-EA regional model data to the world through ESGF data node.

Future Climate Projection over East Asia Using ECHO-G/S (ECHO-G/S를 활용한 미래 동아시아 기후 전망)

  • Cha, Yu-Mi;Lee, Hyo-Shin;Moon, JaYeon;Kwon, Won-Tae;Boo, Kyong-On
    • Atmosphere
    • /
    • v.17 no.1
    • /
    • pp.55-68
    • /
    • 2007
  • Future climate changes over East Asia are projected by anthropogenic forcing of greenhouse gases and aerosols using ECHO-G/S (ECHAM4/HOPE-G). Climate simulation in the 21st century is conducted with three standard SRES scenarios (A1B, B1, and A2) and the model performance is assessed by the 20th Century (20C3M) experiment. From the present climate simulation (20C3M), the model reproduced reliable climate state in the most fields, however, cold bias in temperature and dry bias of summer in precipitation occurred. The intercomparison among models using Taylor diagram indicates that ECHO-G/S exhibits smaller mean bias and higher pattern correlation than other nine AOGCMs. Based on SRES scenarios, East Asia will experience warmer and wetter climate in the coming 21st century. Changes of geographical patterns from the present to the future are considerably similar through all the scenarios except for the magnitude difference. The temperature in winter and precipitation in summer show remarkable increase. In spite of the large uncertainty in simulating precipitation by regional scale, we found that the summer (winter) precipitation at eastern coast (north of $40^{\circ}N$) of East Asia has significantly increased. In the 21st century, the warming over the continents of East Asia showed much more increase than that over the ocean. Hence, more enhanced (weakened) land-sea thermal contrast over East Asia in summer (winter) will cause strong (weak) monsoon. In summer, the low pressure located in East Asia becomes deeper and the moisture from the south or southeast is transported more into the land. These result in increasing precipitation amount over East Asia, especially at the coastal region. In winter, the increase (decrease) of precipitation is accompanied by strengthening (weakening) of baroclinicity over the land (sea) of East Asia.

Estimation of Food Miles and CO2 Emissions of Imported Food (수입 음식료품의 푸드 마일리지 및 이산화탄소 배출량 산정)

  • Ju, Ok-Jung;Lee, Jae-Bum;Seong, Mi-Ae;Kim, Su-Yeon;Ryu, Ji-Yeon;Kim, Dai-Gon;Hong, Yoo-Deog
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.1
    • /
    • pp.57-68
    • /
    • 2010
  • Increase in greenhouse gas emissions during the last century has led to remarkable changes in our environment and climate system. Many policy measures have been developed to reduce greenhouse gas emissions across the world, many of which require our lifestyle changes from energy-intensive to energy-saving. One of the changes in our living patterns is to consider food miles. A food mile is the distance food travels from where it is produced to where it is consumed. Providing information of food miles will help people choose low mileage food, helping promote a "green consumption" action and lead to a low carbon society with emission reduction systems. In this study, 10 items are selected from 23 Harmonized commodity description and 2-digit coding system (HS) to estimate their food miles, and $CO_2$ emissions released in the transportation of imported food. For the estimation, four countries are chosen-Korea, Japan, United Kingdom (UK) and France, with Korea and Japan's 2001, 2003, and 2007 trade statistics and UK and France's 2003 and 2007 trade statistics used. As a result, Korea showed in 2007 the highest level of food miles and $CO_2$ emissions per capita among 4 countries. That suggests that Korea should make an effort to purchase local food to reduce food miles and use low-carbon vehicles for food transport, contributing to reducing greenhouse gas emissions.

Climatic Yield Potential Changes Under Climate Change over Korean Peninsula Using 1-km High Resolution SSP-RCP Scenarios (고해상도(1km) SSP-RCP시나리오 기반 한반도의 벼 기후생산력지수 변화 전망)

  • Sera Jo;Yong-Seok Kim;Jina Hur;Joonlee Lee;Eung-Sup Kim;Kyo-Moon Shim;Mingu Kang
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.4
    • /
    • pp.284-301
    • /
    • 2023
  • The changes in rice climatic yield potential (CYP) across the Korean Peninsula are evaluated based on the new climate change scenario produced by the National Institute of Agricultural Sciences with 18 ensemble members at 1 km resolution under a Shared Socioeconomic Pathway (SSP) and Representative Concentration Pathways (RCP) emission scenarios. To overcome the data availability, we utilize solar radiation f or CYP instead of sunshine duration which is relatively uncommon in the climate prediction f ield. The result show that maximum CYP(CYPmax) decreased, and the optimal heading date is progressively delayed under warmer temperature conditions compared to the current climate. This trend is particularly pronounced in the SSP5-85 scenario, indicating faster warming, except for the northeastern mountainous regions of North Korea. This shows the benef its of lower emission scenarios and pursuing more efforts to limit greenhouse gas emissions. On the other hand, the CYPmax shows a wide range of feasible futures, which shows inherent uncertainties in f uture climate projections and the risks when analyzing a single model or a small number of model results, highlighting the importance of the ensemble approach. The f indings of this study on changes in rice productivity and uncertainties in temperature and solar radiation during the 21st century, based on climate change scenarios, hold value as f undamental information for climate change adaptation efforts.