• Title/Summary/Keyword: Climate change problem

Search Result 287, Processing Time 0.025 seconds

Overview of coal-fired power plant ash situation and cement industry in Vietnam

  • Hong, Ha Thi Vu;Ahn, Ji Whan
    • Journal of Energy Engineering
    • /
    • v.27 no.3
    • /
    • pp.57-62
    • /
    • 2018
  • The development of coal-fired power plants to ensure energy security and electricity consumption is a matter for the Vietnam economy. However, the huge amount of ash discharged is a major environmental challenge. It is estimated that by the end of 2017, the amount of ash in the country is about 40 million tons and annually emitted over 16.4 million tons. While the quantity of coal-fired power plant is rising, the ash content will increase year by year if the ash doesn't treat well. The ash will be increased from 61 million tons in 2018 to 109 million tons in 2020, 248 million tons in 2025 and 422 million tons in 2030. The difficulties of coal-fired power plants are the problem of ash handling, some plants are at risk of closure because there are not enough dump capacity to storage. Therefore, Vietnam is in need of urgent measures to treat a large amount of waste from coal-fired power plants. The specific objectives of this study were as follows: (1) provide an overview of coal ash situation produced by coal-fired power plants in Vietnam; (2) study about regulations related to coal ash treatment; (3) comprehend the literature review of the cement sector status.

The Impacts of Greenhouse Gas Abatement on Korean Economy and Energy Industries : An Economic Analysis Using a CGE Model (온실가스 배출 감축이 한국경제와 에너지산업에 미치는 영향 - CGE 모형을 사용한 경제적 분석 -)

  • Lim, Jaekyu
    • Environmental and Resource Economics Review
    • /
    • v.10 no.4
    • /
    • pp.547-567
    • /
    • 2001
  • This paper analyzed what kind of institutional scheme for domestic policy instruments to reduce GHG emissions are desirable for Korea in complying with the international efforts to mitigate climate change, by focusing on independent abatement(equivalent to the imposition of carbon tax) and domestic emission trading. It also examined the economic and environmental implications of recycling the government revenue created from implementation of those policies. By utilizing a dynamic CGE model, this study shows that the economic cost under independent abatement is projected to be higher than that under emission trading. It is because under independent abatement scheme each emitter in economy must meet its emission target regardless of the abatement cost. On the other hand, emission trading allows emitters to reduce the marginal cost of abatement through trading of emission permits. In designing future domestic policies and measure to address the climate change problem in Korea, therefore, this study proposes the introduction of domestic emission trading scheme as the main domestic policy instrument for GHG emission abatement. In terms of double dividend, in addition, this study shows that both independent abatement and emission trading schemes under various assumption on the revenue recycling may not generate the double dividend in Korea.

  • PDF

An overview of Geothermal heat pumps as energy efficient and environmental friendly systems

  • Ahmad, Bilal;Kim, Dong-Hwan;Bahk, Sae-Mahn;Park, Myung-Kyun
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.294-298
    • /
    • 2008
  • The major threats that human being is facing nowadays are the Climate change, depletion of the fossil fuels at a rapid rate and energy costs. A significant portion of world energy consumption is consumed by domestic heating and cooling. And heat pumps, due to their higher utilization efficiencies as compared to conventional heating and cooling systems, offer an attractive solution to this problem. Among the types of heat pumps, the Geothermal heat pump or Ground-source heat pump is a highly efficient, renewable energy technology for space heating and cooling. The Ground-source heat pump uses the Earth as a heat sink in the summer and a heat source in the winter. And the Earth, having a relatively constant temperature, warmer than the air in winter and cooler than the air in summer, offers an excellent heat source in winter and heat sink in summer.. This paper will discuss an overview of the types of heat pumps, its operation, benefits of using geothermal heat pumps, soil characteristics, and overview of some experimental works. Finally it will briefly discuss the opportunity of using these energy efficient systems (EES) in the HVAC market of South Korea.

  • PDF

Investigation of Problem and System by Energy Application in City Level (도시차원에서의 에너지 적용에 따른 문제점 및 체계 검토)

  • Park, Yool;Kim, Sam-Uel;Park, Jin-Young;Lee, Sang-Jin;Yee, Jurng-Jae
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.3
    • /
    • pp.51-58
    • /
    • 2009
  • Recently, many social, economical and political problems have occurred in the field of urban energy supply because of the depletion of fossil fuels and the international climate change agreements and the current energy-related laws focus on individual buildings which makes them difficult to implement. Also, the policies for energy savings have increased day by day, but it is difficult to establish efficient urban plan because of lack of integrated policies and institutions. Current legal systems for urban plan does not cover domestic and international climate change agreements, energy related industry's structural changes and other environmental problems such as embodied energy and global warming. This paper tries to investigate current conditions of legal system to provide fundamental materials for improving energy conservation in urban plan.

Estimation of Regional Future Agricultural Available Groundwater Supply in Jeju Island Using Water Balance Method (물수지 분석법을 이용한 제주도 권역별 미래 농업용 지하수 공급 가능량 추정)

  • Song, Sung-Ho;Lee, Gyu-Sang;Myoung, Woo-Ho;An, Jung-Gi;Baek, Jin-Hee;Jung, Cha-Youn
    • Journal of Soil and Groundwater Environment
    • /
    • v.24 no.2
    • /
    • pp.23-37
    • /
    • 2019
  • To evaluate the available groundwater supply to the agricultural water demand in the future with the climate change scenarios for 40 sub-regions in Jeju Island, groundwater recharge and the available groundwater supply were estimated using water balance analysis method. Groundwater recharge was calculated by subtracting the actual evapotranspiration and direct runoff from the total amount of water resources and available groundwater supply was set at 43.6% from the ratio of the sustainable groundwater capacity to the groundwater recharge. According to the RCP 4.5 scenario, the available groundwater supply to the agricultural water demand is estimated to be insufficient in 2020 and 2025, especially in the western and eastern regions of the island. However, such a water shortage problem is alleviated in 2030. When applying the RCP 8.5 scenario, available groundwater supply can't meet the water demand over the entire decade.

Reinforcement Learning-Based Illuminance Control Method for Building Lighting System (강화학습 기반 빌딩의 방별 조명 시스템 조도값 설정 기법)

  • Kim, Jongmin;Kim, Sunyong
    • Journal of IKEEE
    • /
    • v.26 no.1
    • /
    • pp.56-61
    • /
    • 2022
  • Various efforts have been made worldwide to respond to environmental problems such as climate change. Research on artificial intelligence (AI)-based energy management has been widely conducted as the most effective way to alleviate the climate change problem. In particular, buildings that account for more than 20% of the total energy delivered worldwide have been focused as a target for energy management using the building energy management system (BEMS). In this paper, we propose a multi-armed bandit (MAB)-based energy management algorithm that can efficiently decide the energy consumption level of the lighting system in each room of the building, while minimizing the discomfort levels of occupants of each room.

A Study on Strategies of Public R&D to Achieve National Carbon Neutrality: Focusing on the Implications of the Republic of Korea

  • Song, Jaeryoung;Kim, Cheolhu
    • Asian Journal of Innovation and Policy
    • /
    • v.11 no.1
    • /
    • pp.1-29
    • /
    • 2022
  • Climate action is at the top of the agenda in the international community, as demonstrated at the 2021 G7 Summit and the 2021 UN Climate Summit. Major developed countries are scrambling to make a transition to a green economy and create a new growth momentum. Following the Paris Climate Agreement in 2016, they focus on "carbon neutrality" as an effective means of tackling climate change. The Republic of Korea, a high-carbon economy, submitted its second Nationally Determined Contribution and announced carbon neutrality as a top policy priority. Accordingly, the country increases government budget in research and development (R&D) and science and technology (S&T) policies. Against this backdrop, this study analyzed policies on carbon-neutral S&T and R&D in major advanced countries. The analysis was made by identifying globally pending issues in carbon-neutral policies and climate technology. In addition, focus group interviews were conducted six times with 10 experts to come up with three R&D strategies and action plans for government-funded research institutes to achieve carbon neutrality. To be specific, the following measures were suggested. First, creative and innovative R&D programs are required to solve the problem of carbon emissions. Second, it is necessary to establish carbon neutrality policies and infrastructure which are sustainable to run and manage. Third, it is crucial to promote cooperation in climate technology based on excellence. In conclusion, the strategies proposed in this study are expected to provide directions and implications for policymakers, researchers, and scholars in science and technology to develop effective strategies to achieve national carbon neutrality.

Evaluation of Future Water Deficit for Anseong River Basin Under Climate Change (기후변화를 고려한 안성천 유역의 미래 물 부족량 평가)

  • Lee, Dae Wung;Jung, Jaewon;Hong, Seung Jin;Han, Daegun;Joo, Hong Jun;Kim, Hung Soo
    • Journal of Wetlands Research
    • /
    • v.19 no.3
    • /
    • pp.345-352
    • /
    • 2017
  • The average global temperature on Earth has increased by about $0.85^{\circ}C$ since 1880 due to the global warming. The temperature increase affects hydrologic phenomenon and so the world has been suffered from natural disasters such as floods and droughts. Therefore, especially, in the aspect of water deficit, we may require the accurate prediction of water demand considering the uncertainty of climate in order to establish water resources planning and to ensure safe water supply for the future. To do this, the study evaluated future water balance and water deficit under the climate change for Anseong river basin in Korea. The future rainfall was simulated using RCP 8.5 climate change scenario and the runoff was estimated through the SLURP model which is a semi-distributed rainfall-runoff model for the basin. Scenario and network for the water balance analysis in sub-basins of Anseong river basin were established through K-WEAP model. And the water demand for the future was estimated by the linear regression equation using amounts of water uses(domestic water use, industrial water use, and agricultural water use) calculated by historical data (1965 to 2011). As the result of water balance analysis, we confirmed that the domestic and industrial water uses will be increased in the future because of population growth, rapid urbanization, and climate change due to global warming. However, the agricultural water use will be gradually decreased. Totally, we had shown that the water deficit problem will be critical in the future in Anseong river basin. Therefore, as the case study, we suggested two alternatives of pumping station construction and restriction of water use for solving the water deficit problem in the basin.

Energy Performance Analysis the Common House Pansang Type and Tower (공동주택의 판상형과 타워형 에너지 성능 비교 분석)

  • Yoon, Sung-Meen;Lee, Kyung-Hee;Ahn, Young-Chull
    • Journal of Power System Engineering
    • /
    • v.17 no.3
    • /
    • pp.57-64
    • /
    • 2013
  • This study focus on the analysis of the energy performance in accordance with apartment houses arrangement type by using Ecotect Analysis. Korea, energy-poor country, the rate of dependence on imports amount to 94%, have to reduce energy consumption part of building except in industry and transport which affect the economic. Apartment houses are built in various forms in order to reduce energy, are modelled in each window area ratio, shape, orientation, climate through simulation. Through this study, we can analyze energy performance by form, window area ratio, orientation, climate change and know the optimal elements by the form. In particular, although there have been studied research on the window area ratio and research related to the arrangement form, determined that the information on the regional climate characteristics and the direction of placement is less than existing research. To supplement those problem, adding to seven direction(West, S-60-W, S-30-W, South, S-30-E, S-60-E, East) and climatic element(southern region) is characteristic of this study. The form of apartment houses was modelled for apartment houses built in the 10 years since. And each modeling were analyzed by Ecotect Analysis.

A Study on the Prediction Method of Condensation on the Curtain Wall of the High-rise Apartment Unit (초고층 아파트의 커튼월 결로 예측 방법에 관한 연구)

  • Im, Jeong-Hui
    • Journal of the Korea Construction Safety Engineering Association
    • /
    • s.41
    • /
    • pp.88-101
    • /
    • 2007
  • Recently, the condensation of walls often occurring in domestic high-rise apartment buildings is an important problem. The main purpose of this study is to develop the prediction method for the surface condensation on curtain wall in high-rise apartment buildings. Therefore, in this study, we first analyzed exterior climate factors through the analysis of the Seoul climate data and predicted the change of indoor temperature by using Apache program to find the cause of the condensation state and to prevent condensation. Also, according to this result, exterior climate factors and interior factors, which caused the condensation, was examined. The thermal performance of the curtain wall and the range of potential condensation were analyzed to focus on high-rise apartment buildings through computer simulation programs. The results are as $follows;^1$) The frame edge of curtain wall has a higher U-value than in the center by $30%^2$) Because of stack effect, the rooms on the higher floor have a lower external ventilation rate resulting to a higher relative humidity3) Installing a ventilation system($20m^3$/h. person) makes it possible to have a higher external ventilation rate, resulting to a lower relative humidity.

  • PDF