• Title/Summary/Keyword: Climate change problem

Search Result 289, Processing Time 0.025 seconds

Estimation of non-point pollution reduction effect of Haean Catchment by application of Nature-based Solutions (자연기반해법 적용에 따른 강원도 양구군 해안면의 비점오염 저감 효과 추정)

  • Lee, Ji-Woo;Park, Chan
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.25 no.3
    • /
    • pp.47-62
    • /
    • 2022
  • The Ministry of Environment has been working to reduce the impact on biodiversity, ecosystems, and social costs caused by soil runoff from highland Agricultural fields by setting up non-point pollution source management districts. To reduce soil loss, runoff path reduction technology has been applied, but it has been less cost effective. In addition, non-point pollution sources cause environmental conflicts in downstream areas, and recently highland Agricultural fields are becoming vulnerable to climate change. The Ministry of Environment is promoting the optimal management plan in earnest to convert arable land into forests and grasslands, but since non-point pollution is not a simple environmental problem, it is necessary to approach it from the aspect of NbS(Nature-Based Solution). In this study, a scenario for applying the nature-based solution was established for three subwatersheds west of Haean-myeon, Yanggu-gun, Gangwon-do. The soil loss distribution was spatialized through GeoWEPP and the amount of soil loss was compared for the non-point pollution reduction effect of mixed forests and grasslands. When cultivated land with a slope of 20% or more and ginseng fields were restored to perennial grasslands and mixed forests, non-point pollution reduction effects of about 32% and 29.000 tons compared to the current land use were shown. Also, it was confirmed that mixed forest rather than perennial grassland is an effective nature-based solution to reduce non-point pollution.

Evaluation of Internal through Analysis of Airflow and Ventilation of Coal Storage Shed (옥내저탄장 기류 흐름 및 환기량 분석을 통한 내부 유동 평가)

  • Jo, Hyun-Joung;Lee, Jin-Hong
    • Journal of Environmental Impact Assessment
    • /
    • v.31 no.5
    • /
    • pp.334-342
    • /
    • 2022
  • The stringent air environment conservation act forced to build an indoor dome for coal storage. However, it causes some problems due to accumulation of fly ash and harmful substances inside. To solve this problem, this study analyzed the pattern of internal airflow and the amount of ventilation for an indoor coal yard. Overall, the airflow inside the indoor coal yard tended to move to the southwest facing the mountain. In addition, sea-breeze was blowing from the northern louver window facing the sea, where airflow was flowing in. The total flow rate flowing into the indoor coal yard was 918,691 m3/h, and the number of natural ventilation per hour was 0.6 times. Therefore, it is proposed to install a forced ventilation device at the location where internal air flow is concentrated.

Comparative Analysis of Solar Power Generation Prediction AI Model DNN-RNN (태양광 발전량 예측 인공지능 DNN-RNN 모델 비교분석)

  • Hong, Jeong-Jo;Oh, Yong-Sun
    • Journal of Internet of Things and Convergence
    • /
    • v.8 no.3
    • /
    • pp.55-61
    • /
    • 2022
  • In order to reduce greenhouse gases, the main culprit of global warming, the United Nations signed the Climate Change Convention in 1992. Korea is also pursuing a policy to expand the supply of renewable energy to reduce greenhouse gas emissions. The expansion of renewable energy development using solar power led to the expansion of wind power and solar power generation. The expansion of renewable energy development, which is greatly affected by weather conditions, is creating difficulties in managing the supply and demand of the power system. To solve this problem, the power brokerage market was introduced. Therefore, in order to participate in the power brokerage market, it is necessary to predict the amount of power generation. In this paper, the prediction system was used to analyze the Yonchuk solar power plant. As a result of applying solar insolation from on-site (Model 1) and the Korea Meteorological Administration (Model 2), it was confirmed that accuracy of Model 2 was 3% higher. As a result of comparative analysis of the DNN and RNN models, it was confirmed that the prediction accuracy of the DNN model improved by 1.72%.

Development of flood hazard and risk maps in Bosnia and Herzegovina, key study of the Zujevina River

  • Emina, Hadzic;Giuseppe Tito, Aronica;Hata, Milisic;Suvada, Suvalija;Slobodanka, Kljucanin;Ammar, Saric;Suada, Sulejmanovic;Fehad, Mujic
    • Coupled systems mechanics
    • /
    • v.11 no.6
    • /
    • pp.505-524
    • /
    • 2022
  • Floods represent extreme hydrological phenomena that affect populations, environment, social, political, and ecological systems. After the catastrophic floods that have hit Europe and the World in recent decades, the flood problem has become more current. At the EU level, a legal framework has been put in place with the entry into force of Directive 2007/60/EC on Flood Risk Assessment and Management (Flood Directive). Two years after the entry into force of the Floods Directive, Bosnia and Herzegovina (B&H), has adopted a Regulation on the types and content of water protection plans, which takes key steps and activities under the Floods Directive. The "Methodology for developing flood hazard and risk maps" (Methodology) was developed for the territory of Bosnia and Herzegovina, following the methodology used in the majority of EU member states, but with certain modifications to the country's characteristics. Accordingly, activities for the preparation of the Preliminary Flood Risk Assessment for each river basin district were completed in 2015 for the territory of Bosnia and Herzegovina. Activities on the production of hazard maps and flood risk maps are in progress. The results of probable climate change impact model forecasts should be included in the preparation of the Flood Risk Management Plans, which is the subsequent phase of implementing the Flood Directive. By the foregoing, the paper will give an example of the development of the hydrodynamic model of the Zujevina River, as well as the development of hazard and risk maps. Hazard and risk maps have been prepared for medium probability floods of 1/100 as well as for high probability floods of 1/20. The results of LiDAR (Light Detection and Ranging) recording were used to create a digital terrain model (DMR). It was noticed that there are big differences between the flood maps obtained by recording LiDAR techniques in relation to the previous flood maps obtained using georeferenced topographic maps. Particular attention is given to explaining the Methodology applied in Bosnia and Herzegovina.

Investigation of AI-based dual-model strategy for monitoring cyanobacterial blooms from Sentinel-3 in Korean inland waters

  • Hoang Hai Nguyen;Dalgeun Lee;Sunghwa Choi;Daeyun Shin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.168-168
    • /
    • 2023
  • The frequent occurrence of cyanobacterial harmful algal blooms (CHABs) in inland waters under climate change seriously damages the ecosystem and human health and is becoming a big problem in South Korea. Satellite remote sensing is suggested for effective monitoring CHABs at a larger scale of water bodies since the traditional method based on sparse in-situ networks is limited in space. However, utilizing a standalone variable of satellite reflectances in common CHABs dual-models, which relies on both chlorophyll-a (Chl-a) and phycocyanin or cyanobacteria cells (Cyano-cell), is not fully beneficial because their seasonal variation is highly impacted by surrounding meteorological and bio-environmental factors. Along with the development of Artificial Intelligence (AI), monitoring CHABs from space with analyzing the effects of environmental factors is accessible. This study aimed to investigate the potential application of AI in the dual-model strategy (Chl-a and Cyano-cell are output parameters) for monitoring seasonal dynamics of CHABs from satellites over Korean inland waters. The Sentinel-3 satellite was selected in this study due to the variety of spectral bands and its unique band (620 nm), which is sensitive to cyanobacteria. Via the AI-based feature selection, we analyzed the relationships between two output parameters and major parameters (satellite water-leaving reflectances at different spectral bands), together with auxiliary (meteorological and bio-environmental) parameters, to select the most important ones. Several AI models were then employed for modelling Chl-a and Cyano-cell concentration from those selected important parameters. Performance evaluation of the AI models and their comparison to traditional semi-analytical models were conducted to demonstrate whether AI models (using water-leaving reflectances and environmental variables) outperform traditional models (using water-leaving reflectances only) and which AI models are superior for monitoring CHABs from Sentinel-3 satellite over a Korean inland water body.

  • PDF

Introductions for Foreign PEM Systems and It's Field Test Plan Linked to Renewable Energy in Jeju Island (국외 PEM 수전해시스템 도입 및 제주도 재생에너지 연계 실증방안)

  • Sangyup Jang;Jaedong Kim;Dongmin Kim;Jinmo Park;Youngseuk So
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.1
    • /
    • pp.33-37
    • /
    • 2023
  • Efforts by each country to solve the climate change problem continue, and the transition to eco-friendly fuels is a task for mankind to continue. Recently, Jeju Island, where renewable energy resources are relatively abundant, is preparing to demonstrate the technology to produce green hydrogen linked to renewable energy and this study aims to introduce and apply polymer electrolyte water electrolysis devices of advanced foreign companies after comparing domestic and foreign technologies. This study aims to solve domestic safety regulations for water electrolysis devices manufactured overseas and system introduction process and evaluation method of core components.

Investigating the Cause of Ash Deposition and Equipment Failure in Wood Chip-Fueled Cogeneration Plant (우드칩을 연료로 하는 열병합발전소의 회분 퇴적 및 설비 고장 원인 분석)

  • Min Ji Song;Woo Cheol Kim;Heesan Kim;Jung-Gu Kim;Soo Yeol Lee
    • Corrosion Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.187-192
    • /
    • 2023
  • The use of biomass is increasing as a response to the convention on climate change. In Korea, a method applied to replace fossil fuels is using wood chips in a cogeneration plant. To remove air pollutants generated by burning wood chips, a selective denitrification facility (Selective catalytic reduction, SCR) is installed downstream. However, problems such as ash deposition and descaling of the equipment surface have been reported. The cause is thought to be unreacted ammonia slip caused by ammonia ions injected into the reducing agent and metal corrosion caused by an acidic environment. Element analysis confirmed that ash contained alkali metals and sulfur that could cause catalyst poisoning, leading to an increase in the size of ash particle and deposition. Measurement of the size of ash deposited inside the facility confirmed that the size of ash deposited on the catalyst was approximately three times larger than the size of generally formed ash. Therefore, it was concluded that a reduction in pore area of the catalyst by ash deposition on the surface of the catalyst could lead to a problem of increasing differential pressure in a denitrification facility.

Study on Risk Assessment Method of Hydrogen Station using FAHP-HAZOP (FAHP-HAZOP을 적용한 수소충전소의 위험성평가 방법 연구)

  • Yeong Gwang Jo;Sien Ho Han
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.4
    • /
    • pp.92-101
    • /
    • 2023
  • To solve the problem of climate change, carbon neutrality has now become a necessity rather than an option. Hydrogen is not only a energy storage that can supplement the intermittent production of renewable energy, but is also considered a good alternative in the field of utilization as it does not emit carbon dioxide after reaction. In order to revitalize hydrogen vehicles, one of the fields of hydrogen utilization, the construction of hydrogen station infrastructure must be preceded. Prioritization of risk factors is necessary for efficient operation and risk assessment of hydrogen stations, but due to the short operation period of domestic hydrogen stations, there is a lack of frequency data on accidents and their reliability is low. In this study, we aim to identify the causes and consequences of deviations in hydrogen stations through HAZOP analysis. Additionally, we intend to analyze them using Fuzzy-AHP. Through this, we intend to derive the decision values for the causes of deviations in hydrogen stations and apply them to hydrogen accident cases and risk assessments to confirm the reliability and utility of the data.

Insights into Enzyme Reactions with Redox Cofactors in Biological Conversion of CO2

  • Du-Kyeong Kang;Seung-Hwa Kim;Jung-Hoon Sohn;Bong Hyun Sung
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.11
    • /
    • pp.1403-1411
    • /
    • 2023
  • Carbon dioxide (CO2) is the most abundant component of greenhouse gases (GHGs) and directly creates environmental issues such as global warming and climate change. Carbon capture and storage have been proposed mainly to solve the problem of increasing CO2 concentration in the atmosphere; however, more emphasis has recently been placed on its use. Among the many methods of using CO2, one of the key environmentally friendly technologies involves biologically converting CO2 into other organic substances such as biofuels, chemicals, and biomass via various metabolic pathways. Although an efficient biocatalyst for industrial applications has not yet been developed, biological CO2 conversion is the needed direction. To this end, this review briefly summarizes seven known natural CO2 fixation pathways according to carbon number and describes recent studies in which natural CO2 assimilation systems have been applied to heterogeneous in vivo and in vitro systems. In addition, studies on the production of methanol through the reduction of CO2 are introduced. The importance of redox cofactors, which are often overlooked in the CO2 assimilation reaction by enzymes, is presented; methods for their recycling are proposed. Although more research is needed, biological CO2 conversion will play an important role in reducing GHG emissions and producing useful substances in terms of resource cycling.

Development of monitoring system to prevent inflow of marine life into the nuclear power plant (해양생물의 원전 취수구 유입 방지를 위한 모니터링 시스템 개발)

  • Tae-Jong KANG;Eun-Bi MIN;Joong-Ro SHIN;Doo-Jin HWANG
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.60 no.3
    • /
    • pp.277-289
    • /
    • 2024
  • Climate change has led to a significant increase in jellyfish populations globally, causing various problems. For power plants that use nearby seawater for cooling, the intrusion of jellyfish into intake systems can block the flow, leading to reduced output or even shutdowns. This issue is compounded by other small marine organisms like shrimp and salps, making it urgent to develop solutions to prevent their intrusion. This study addressed the problem using the BioSonics DT-X 120 kHz scientific fish finder to conduct preliminary tank experiments. We also deployed underwater acoustic and camera buoys around the intake of nuclear power plant, utilizing a bidirectional communication system between sea and land to collect data. Data collection took place from July 31, 2023 to August 1, 2023. While harmful organisms such as jellyfish and salps were not detected, we successfully gathered acoustic data on small fish measuring backscattering strength (SV). Analysis showed that fish schools were more prominent in the evening than during the day. The highest fish distribution was observed at 3:30 AM on July 31 with an SV of -44.8 dB while the lowest was at 12:30 PM on the same day with an SV of -63.4 dB. Additionally, a solar-powered system was used to enable real-time data acquisition from sea buoys with smooth communication between the land server and the offshore buoy located 1.8 km away. This research developed an acoustic-based monitoring system for detecting harmful organisms around the intake and provided foundational data for preventing marine organism intrusion and planning effective measures.