• Title/Summary/Keyword: Climate Energy

Search Result 1,587, Processing Time 0.032 seconds

Economic Analysis on a PV System in an Apartment Complex (공동주택 태양광발전 시스템의 경제성 평가)

  • Kim, Jin-Hyung
    • Journal of Climate Change Research
    • /
    • v.1 no.2
    • /
    • pp.163-177
    • /
    • 2010
  • This study analyzes the economies of photovoltaic systems in an apartment complex of 1,185 households, in cases of feed-in tariff and subsidy for solar home program of the government. When including the revenue only from electricity sales, NPVs of subsidy and that of feed-in tariff are -560 million KRW and -87 million KRW respectively. With the avoided social cost included without the revenues from CERs, NPVs of subsidy and feed-in tariff are -556 million KRW and -84 million KRW respectively. With the revenues from CERs, NPV of subsidy is -526 million KRW and NPV of feed-in tariff is -54 million KRW. As results of sensitivity analysis based on the changes in capital costs and discount rates, while all scenarios with subsidy including the revenues from CERs are not commercially viable, all scenarios with feed-in tariff exclusive of the revenues from CERs are commercially viable when discount rate is less than 7.2% or capital cost is less than 6,840 thousand KRW/kW. In the cases that include the avoided social cost, while all scenarios with subsidy including the avoided social cost as well as the revenues from CERs are not commercially viable, all scenarios with feed-in tariff are commercially viable without the revenues from CERs when discount rate is less than 7.2% or capital cost is less than 6,856 thousand KRW/KW. The results indicate that the changes in discount rates do not influence the revenues from CERs, but the revenues from electricity sale. Considering that the number of apartment complex and the positive environmental and social benefits from PV system, government needs to promote its diffusion.

A Study on Status Analysis for Advancement iNto Agricultural Sector in Central Asia (중앙아시아 농업분야 진출을 위한 현황분석 - 우즈베키스탄, 카자흐스탄, 키르기즈스탄 중심으로 -)

  • Park, Dong-Jin;Jo, Sung-Ju;Park, Jeong-Woon;Sa, Soo-Jin;Hong, Jung-Sik;Lee, Dong-Jin
    • Journal of the Korean Society of International Agriculture
    • /
    • v.30 no.4
    • /
    • pp.328-338
    • /
    • 2018
  • Central Asia (Uzbekistan, Kazakhstan, Kyrgyzstan) is a hot and arid continental climate, with most areas (68%) consisting of barren vegetation, desert, and meadows. The main agricultural areas for crop production include irrigated farmland, non-irrigated farmland, grassland, prairie and mountain. We are experiencing climate change with recent climate variability increasing. Agriculture is one of major economic sectors and provides a means of livings for the rural population of Central Asia, especially the poor. In the past two decades, Central Asia has experienced a high population growth rate, with Kazakhstan at 16.8%, Uzbekistan at 34.5% and Kyrgyzstan at 28.4%. As a major industry, Kazakhstan has the largest share of exports of agricultural products followed by petroleum, mineral resources, steel, and chemicals. Uzbekistan is the fifth largest cotton exporter as well as the sixth largest cotton producer in the world. Kyrgyzstan exports ores, stones, cultured pearls, and minerals. These three countries are rich in mineral resources, agricultural products, and energy resources. However, not only do they have difficulties in economic development due to the weakness of logistics and industrial infrastructure, but they also have imperceptible cooperation and investment among countries due to insufficient research and development. Through this study, we will investigate national outlook, economic indicators, major agricultural products, import and export status, and agricultural technology cooperation status, and study how Korean agricultural industry advances into these countries through SWOT analysis. Through this, we hope to contribute to the basic data of Central Asian studies and cooperation and investment in agriculture in each country. In addition, in order to increase cooperative exchange and investment in these countries, we will prepare a Central Asia logistics hub for the rapidly changing interKorean railroad era.

Blue Carbon Resources in the East Sea of Korea and Their Values and Potential Applications (동해안 블루카본 자원의 가치와 활용방안)

  • Yoon, Ho-Sung;Do, Jeong-Mi;Jeon, Byung Hee;Yeo, Hee-Tae;Jang, Hyeong Seok;Yang, Hee Wook;Suh, Ho Seong;Hong, Ji Won
    • Journal of Life Science
    • /
    • v.32 no.7
    • /
    • pp.578-587
    • /
    • 2022
  • Korea, as the world's 7th largest emitter of greenhouse gases, has raised the national greenhouse gas reduction target as international regulations have been strengthened. As it is possible to utilize coastal and marine ecosystems as important nature-based solutions (NbS) for implementing climate change mitigation or adaptation plans, the blue carbon ecosystem is now receiving attention. Blue carbon refers to carbon that is deposited and stored for a long period after carbon dioxide (CO2) is absorbed as biomass by coastal ecosystems or oceanic ecosystems through photosynthesis. Currently, there are only three blue carbon ecosystems officially recognized by the Intergovernmental Panel on Climate Change (IPCC): mangroves, salt marshes, and seagrasses. However, the results of new research on the high CO2 sequestration and storage capacity of various new blue carbon sinks, such as seaweeds, microalgae, coral reefs, and non-vegetated tidal flats, have been continuously reported to the academic community recently. The possibility of IPCC international accreditation is gradually increasing through scientific verification related to calculations. In this review, the current status and potential value of seaweeds, seagrass fields, and non-vegetated tidal flats, which are sources of blue carbon on the east coast, are discussed. This paper confirms that seaweed resources are the most effective NbS in the East Sea of Korea. In addition, we would like to suggest the direction of research and development (R&D) and utilization so that new blue carbon sinks can obtain international IPCC certification in the near future.

The Research about Map Model of 3D Road Network for Low-carbon Freight Transportation (저탄소 화물운송체계 구현을 위한 3차원 도로망도 모델에 관한 연구)

  • Lee, Sang-Hoon
    • Spatial Information Research
    • /
    • v.20 no.4
    • /
    • pp.29-36
    • /
    • 2012
  • The low-carbon freight transportation system was introduced due to increase traffic congestion cost and carbon-dioxide for global climate change according to expanding city logistics demands. It is necessary to create 3D-based road network map for representing realistic road geometry with consideration of fuel consumption and carbon emissions. This study propose that 3D road network model expressed to realistic topography and road structure within trunk road for intercity freight through overlaying 2D-based transport-related thematic map and 1m-resolution DEM. The 3D-based road network map for the experimental road sections(Pyeongtaek harbor-Uiwang IC) was verified by GPS/INS survey and fuel consumption simulation. The results corresponded to effectively reflect realistic road geometry (RMSE=0.87m) except some complex structure such as overpass, and also actual fuel consumption. We expect that Green-based freight route planning and navigation system reflected on 3D geometry of complex road structure will be developed for effectively resolving energy and environmental problems.

PARAMETRIC NUMERICAL STUDY OF THE REACTING FLOW FIELD OF A COAL SLURRY ENTRAINED GASIFIER (분류층 석탄 가스화기 반응 유동장 변수 전산해석 연구)

  • Song, W.Y.;Kim, H.S.;Shin, M.S.;Jang, D.S.;Lee, Jae-Goo
    • Journal of computational fluids engineering
    • /
    • v.19 no.3
    • /
    • pp.44-51
    • /
    • 2014
  • Considering the importance of the detailed resolution of the reacting flow field inside a gasifier, the objective of this study lies on to investigate the effect of important variables to influence on the reacting flow and thereby to clarify the physical feature occurring inside the gasifier using a comprehensive gasifier computer program. Thus, in this study the gasification process of a 1.0 ton/day gasifier are numerically modeled using the Fluent code. And parametric investigation has been made in terms of swirl intensity and aspect ratio of the gasifier. Doing this, special attention is given on the detailed change of the reacting flow field inside a gasifier especially with the change of this kind of design and operation parameters. Based on this study, a number of useful conclusions can be drawn in the view of flow pattern inside gasifier together with the consequence of the gasification process caused by the change of the flow pattern. Especially, swirl effect gives rise to a feature of a central delayed recirculation zone, which is different from the typical strong central recirculation appeared near the inlet nozzle. The delayed feature of central recirculation appearance could be explained by the increased axial momentum due to the substantial amount of the presence of the coal slurry occupying over the entire gasifier in gasification process. Further, the changes of flow pattern are explained in detail with the gasifier aspect ratio. In general, the results obtained are physically acceptable in parametric study.

Analysis of Micro-grid Operations Including PV Source and Li Battery (태양광 전원과 Li 배터리를 포함하는 마이크로 그리드의 운영특성 해석)

  • Kim, Deok Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.7
    • /
    • pp.4692-4697
    • /
    • 2014
  • A micro-grid including photovoltaic source and Li battery has been installed and operated for several years at the campus of USF and been used as a test bed. Photovoltaic power source has been strongly influenced by the location, weather and climate of the installed area. To compensate for the uncertainty of photovoltaic source's power output, a Li battery is connected directly to the photovoltaic source and supplies electric power to the grid. The Li battery is operated to supply power output to the grid according to the charging or discharging mode of the battery based on the average power output of the photovoltaic source, which is calculated from the monitored data for several years. The grid of the photovoltaic and Li battery system is operated as a severe loading condition and the operating characteristics of PV source and Li battery cells are analyzed in detail.

Transciptomic Analysis of Larval Fat Body of Plutella xylostella under Low Temperature (저온조건에서 배추좀나방(Plutella xylostella) 지방체 유전자 발현 변화)

  • Kim, Kwang-Ho;Lee, Dae-Weon
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.4
    • /
    • pp.296-306
    • /
    • 2019
  • BACKGROUND: Temperature is known to be the main factor affecting development, growth and reproduction of organisms and also a physical factor directly related to insect survival. Insects as ectothermal species should be responsive to climate changes for their survival and develop various survival strategies under the unfavorable temperature such as low temperature. The purpose of this study is to identify genes contributing to adaptation of low temperature. METHODS AND RESULTS: To identify genes contributing to adaptation of low temperature, the transcriptomic data were obtained from fat body in Plutella xyostella larvae via next generation sequencing. We identified structural proteins, heat shock proteins, antioxidant enzymes, detoxification proteins, and cryoprotectant mobilization and biosynthesis-related proteins. Genes encoding chitinase, cuticular protein, Hsp23, chytochrome protein, Glutathione S transferase, and phospholipase 2 were up-regulated under low temperature. Proteins related to energy metabolism such as UDP-glycosy ltransferase, trehalase and trehalose transporter were down-regulated. CONCLUSION: When insect pests were exposed to low temperature, changes in gene expression of fat body could provide some hints for understanding temperature adaptation strategies.

Development Guidelines of Environmental planning Indicators for Environmentally friendly Urban and Architectural Planning (친환경적 도시건축계획을 위한 환경계획지표개발의 방향)

  • Chang, Dong-Min
    • KIEAE Journal
    • /
    • v.1 no.2
    • /
    • pp.5-12
    • /
    • 2001
  • Through the harmony of natural and artificial systems a city is composed of, the ecology-oriented urban planning seeks for qualitative improvements of a city on which our life is based. To enhance the ecology-oriented urban planning, the followings are suggested by a comparative analysis of Korea with Germany regarding the development process, the instruments, and the establishment of indicators for the planning. Firstly, though our national land development plan is closely connected with B-plan, it has little to do with the natural environment. Moreover, the natural environment plan of the Ministry of Environment is almost impossible to carry out in terms of urban construction work. For this reason, the instrument for dealing with the development and environment plan systems together as well as the completion of the current plan system is needed for the ecologically acceptable urban development in the long term. Secondly, in order to realize what is mentioned above in the concrete it seems to be desirable for the system and the instrument to be devised at the extent of B-plan. The regulations of the plan should have strong legal binding force and practicality as well. The element of ecology-oriented urban planning are (1) degree of independence and appropriate density, (2) conservation of natural elements such as soil, water, animals and plants etc., (3) energy saving in land use, (4) activation of B-plan and inducement of active participation of residents. Thirdly, it will be useful to develop various kinds of indicators for the environment plan provided in advance so that the ecology-oriented urban developments may be under control. It also should be taken into consideration that the indicators are supposed to be comprehensive, representative, and practical enough to make the most of at the early stage of drawing up a plan. The kinds of indicators which can be used in the ecology-oriented urban development include (1) soil, (2) water, (3) vegetation and plants, (4) animals, (5) climate, and (6) transportation.

  • PDF

A Study on the Classification Criteria of Climatic Zones in Korean Building Code Based on Heating Degree-Days (난방도일 기반 대한민국 행정구역별 기후존 구분 기준 정립에 관한 연구)

  • Noh, Byeong Il;Choi, Jaewan;Seo, Donghyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.11
    • /
    • pp.574-580
    • /
    • 2015
  • Climatic zone in building code is an administrative district classification reflecting regional climatic characteristics. Use of Degree-Days is a fundamental method that can be used in various building design codes, analysis of building energy performance, and establishment of minimum thermal transmittance of building envelopes. Many foreign countries, such as the USA, the EU, Australia, Italy, India, China, etc., have already adapted climatic zone classification with degree-days, precipitation or amount of water vapor based on the characteristics of their own country's climate. In Korea, however, the minimum requirements for regional thermal transmittance are classified separately for the Jungbu area, Nambu area and Jeju Island with no definite criterion. In this study, degree-days of 255 Korean cities were used for climatic zone classification. Outdoor dry-bulb temperature data from the Korea Meteorological Administration for 1981~2010 was used to calculate degree-days. ArcGIS and the calculated degree-days were utilized to analyze and visualize climatic zone classification. As a result, depending on the distribution and distinctive differences in degree-days, four climatic zones were derived : 1) Central area, 2) Mountain area of Gyeonggi and Gangwon provinces, 3) Southern area, and 4) Jeju Island. The climatic zones were suggested per administrative district for easy public understanding and utilization.

A Study on the Direction of Public Bicycle Development in Korea - Focused on Ttareungyi and Nuviza - (국내 공공자전거 발전 방향에 관한 연구 - 따릉이(Ttareungyi)와 누비자(Nuviza)를 중심으로 -)

  • Kim, Ha-Gyeong;Kim, Seung-In
    • Journal of Digital Convergence
    • /
    • v.16 no.8
    • /
    • pp.263-267
    • /
    • 2018
  • In this study, it is aimed to solve the problems of energy depletion, environmental pollution, climate change and traffic congestion in the coming generations. In Korea, the usage of public bicycle, which is a short-distance transportation system, is continuously increasing. Therefore, we analyzed the public bicycles of 'Taungryei' in Seoul and 'Nubiza' in Changwon City. We also conducted in-depth interviews with Stephen Anderson based on six principles of Creating Pleasurable Interfaces. As a result, users' discomfort was found in the functional part and the usability part of the public bicycle. Also, it was confirmed that the users were satisfied with the public bicycle in the meaningful part. Therefore, public bicycles should consider the user experience aspects to complement functional and usability parts for users.