• Title/Summary/Keyword: Climate Energy

Search Result 1,587, Processing Time 0.041 seconds

Evaluation of Greenhouse Gas Emissions from Animal Manure Treatment Systems with Life Cycle Assessment : A Case Study (전과정평가를 이용한 가축분뇨 처리시설의 온실가스 배출량 평가 : 사례 연구)

  • Park, K.H.;Choi, D.Y.;Cho, S.B.;Yang, S.H.;Hwang, O.H.
    • Journal of Animal Environmental Science
    • /
    • v.17 no.sup
    • /
    • pp.1-6
    • /
    • 2011
  • Korean Government announced 'The Roadmap to realize a low carbon green society on year 2020' on July 12, 2011 in order to mitigate greenhouse gas (GHG) emissions. Non-energy category of Food, Agriculture, Forestry and Fishery (FAFF) should mitigate 1,349 kilo $CO_2$-equivalent ($CO_2$-eq.) tonnes which is 7.1% of Business-As-Usual on year 2020. The mitigation from animal manure treatment system (AMTS) comprises ca. 45% of the total mitigated amount of Non-energy category of FAFF. Hence, the precise evaluation of GHG emissions from AMTS is important to find effective mitigation measures. Life cycle assessment was used to evaluate GHG emissions from AMTS. The most GHG emitter was a composting/liquid fertilizer/activated sludge system (1,649.45 kg $CO_2$-eq./head/year) and the least GHG emitter was a activated liquid fertilizer system (1,024.46 kg $CO_2$-eq./head/year). Thermophilic oxic process showed the highest ratio (34.9%) of GHG emissions by the use of electricity to total GHG emissions from systems. Energy efficiency should be considered to mitigate GHG emissions from AMTS.

Assessment on Thermal Transmission Property of Wall Through a Scaled Model Test (축소모형 실험을 통한 벽체의 열관류 측정)

  • Chang, Yoon-Seong;Kim, Sejong;Shim, Kug-Bo;Lee, Sang-Joon;Han, Yeonjung;Park, Yonggun;Yeo, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.6
    • /
    • pp.884-889
    • /
    • 2015
  • Appropriate evaluation of thermal insulation property of structural member and valid control of cooling/heating energy are important for improving building's energy efficiency. The typical heating system of house in Korea is the floor heating one. The radiation heating system is not only appropriate to climate and geographic conditions of Korea, but also advantageous to provide emotional comfort by the warm feeling of floor. Based on living conditions in Korea, scaled models of the wooden house and concrete house were designed. The ceiling was made of styrofoam insulation and the four sided walls and bottom were made of plywood and concrete, respectively. The floor was heated by heating film. Indoor vertical temperature distributions by floor heating system were measured by thermocouple, and surface temperatures on walls were measured by infrared thermography. Also, thermal insulation property of wooden wall was evaluated to build database for improving energy efficiency of wooden building. It is expected that collected data during tests of various types of floor and wall composition could be referenced for evaluating thermal environment of actual conditions of houses.

A Study of the Combination Method for Earthwork Equipments Using the Environmental Loads and Costs (토공사 환경오염물질 부하량 및 공사비를 이용한 장비조합방법 연구)

  • Kang, Min-Ho;Park, Hyung-Keun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.1215-1224
    • /
    • 2013
  • Great efforts have been made worldwide to reduce the Green House Gas (GHG) emission following the "Kyoto Protocol" declared during the United Nations Framework Convention on Climate Change in 1997. Many industries have restructured to meet the standard set by the Protocol. However, no clear guidance has been established for the purpose of reducing the GHG emission in construction industry. In addition, no significant effort has been made to conserve the energy during construction activities. For more effective energy saving in construction industry, it is essential to collect data about energy consumption, quantity of environmental emissions and costs. However, most studies on sustainable construction have been concentrated on the use of equipment, maintenance and repair works during construction due to the difficulties of collecting such data. This study suggests a method to select the most environmentally friendly equipment combination for earthwork with comparing environmental loads and costs using the database of Life Cycle Inventory in the Ministry of Knowledge Economy and Ministry of Environment of Korea.

Effect of Inorganic Admixture for Magnesia Cement Using MgCO3 and Serpentine (MgCO3와 사문석을 사용한 마그네시아 시멘트의 무기 첨가제 영향)

  • Lee, Jong-Kyu;Soh, Jung-Sub
    • Korean Journal of Materials Research
    • /
    • v.25 no.2
    • /
    • pp.75-80
    • /
    • 2015
  • The carbon dioxide($CO_2$) released while producing building materials is substantial and has been targeted as a leading contributor to global climate change. One of the most typical method to reducing $CO_2$ for building materials is the addition of slag and fly ash, like pozzolan material, while another method is reducing $CO_2$ production by carbon negative cement development. The MgO-based cement was from the low-temperature calcination of magnesite required less energy and emitted less $CO_2$ than the manufacturing of Portland cements. It is also believed that adding reactive MgO to Portland-pozzolan cements could improve their performance and also increase their capacity to absorb atmospheric $CO_2$. In this study, the basic research for magnesia cement using $MgCO_3$ and magnesium silicate ore (serpentine) as main starting materials, as well as silica fume, fly ash and blast furnace slag for the mineral admixture, were carried out for industrial waste material recycling. In order to increase the hydration activity, $MgCl_2$ was also added. To improve hydration activity, $MgCO_3$ and serpentinite were fired at $700^{\circ}C$ and autoclave treatment was conducted. In the case of $MgCO_3$ as starting material, hydration activity was the highest at firing temperature of $700^{\circ}C$. This $MgCO_3$ was completely transferred to MgO after firing. This occurred after the hydration reaction with water MgO was transferred completely to $Mg(OH)_2$ as a hydration product. In the case of using only $MgCO_3$, the compressive strength was 3.5MPa at 28 days. The addition of silica fume enhanced compressive strength to 5.5 MPa. In the composition of $MgCO_3$-serpentine, the addition of pozzolanic materials such as silica fume increased the compression strength. In particular, the addition of $MgCl_2$ compressive strength was increased to 80 MPa.

Development of Metabolic Engineering Strategies for Microbial Platform to Produce Bioplastics (바이오플라스틱 생산 미생물 플랫폼 제작을 위한 대사공학 전략 개발)

  • Park, Si Jae;David, Yokimiko;Baylon, Mary Grace;Hong, Soon Ho;Oh, Young Hoon;Yang, Jung Eun;Choi, So Young;Lee, Seung Hwan;Lee, Sang Yup
    • Applied Chemistry for Engineering
    • /
    • v.25 no.2
    • /
    • pp.134-141
    • /
    • 2014
  • As the concerns about environmental problems, climate change and limited fossil resources increase, bio-based production of chemicals and polymers from renewable resources gains much attention as one of the promising solutions to deal with these problems. To solve these problems, much effort has been devoted to the development of sustainable process using renewable resources. Recently, many chemicals and polymers have been synthesized by biorefinery process and these bio-based chemicals and plastics have been suggested as strong candidates to substitute petroleum-based products. In this review, we discuss current advances on the development of metabolically engineered microorganisms for the efficient production of bio-based chemicals and polymers.

Identification of Dynamic Characteristics Using Vibration Measurement Data of Saemangeum Mangyeong Offshore Observation Tower and Numerical Model Updating by Pattern Search Method (새만금 만경해상관측타워의 진동계측자료를 이용한 동특성 분석과 패턴서치 방법에 의한 수치해석모델 개선)

  • Park, Sangmin;Yi, Jin-Hak;Cho, Cheol-Ho;Park, Jin-Soon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.5
    • /
    • pp.285-295
    • /
    • 2020
  • In the case of small observation towers located at sea, it is necessary to confirm the change in dynamic characteristics due to the influence of environmental loads. In this study, the dynamic characteristics were analyzed and the numerical analysis model was designed through field dynamic response measurement on the Mangyeong Offshore Observation Tower (Mangyeong Tower) located near the Saemangeum Embankment. As a result of the measurement, the natural frequency was found to increase slowly as the tide level is lowered. In addition, it was confirmed that the same mode has two frequencies, which was judged to be a phenomenon in which the natural frequency was partially increased when the pile and the ground contacted by scouring. For numerical analysis, the upper mass, artificial fixity point, scour depth and fluid influences are reflected in the structural characteristics of the Mangyeong Tower. In addition, the model updating from the estimated natural frequency and pattern search algorithm was performed. From the model updating, it is expected that it can be applied to future studies on stability of Mangyeong Tower.

Numerical Sudy on Bubbling Fluidized Bed Reactor for Fast Pyrolysis of Waste Lignocelluosic Biomass (폐목질계 바이오매스의 급속열분해 기포유동층 반응기에 대한 수치해석적 연구)

  • Lee, Ji Eun;Choi, Hang Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.10
    • /
    • pp.710-716
    • /
    • 2013
  • New and renewable energy sources have drawn attention because of climate change. Many studies have been carried out in waste-to-energy field. Fast pyrolysis of waste lignocelluosic biomass is one of the waste-to-energy technologies. Bubbling fluidized bed (BFB) reactor is widely used for fast pyrolysis of the biomass. In BFB pyrolyzer, bubble behavior influences on the chemical reaction. Accordingly, in the present study, hydrodynamic characteristics and fast pyrolysis reaction of waste lignocellulosic biomass occurring in a BFB pyrolyzer are scrutinized. The computational fluid dynamics (CFD) simulation of the fast pyrolysis reactor is carried out by using Eulerian-Granular approach. And two-stage semi-global kinetics is applied for modeling the fast pyrolysis reaction of waste lignocellulosic biomass. To summarize, generation and ascendant motion of bubbles in the bed affect particle behavior. Thus biomass particles are well mixed with hot sand and consequent rapid heat transfer occurs from sand to biomass particles. As a result, primary reaction is observed throughout the bed. And reaction rate of tar formation is the highest. Consequently, tar accounts for 66wt.% of the product gas. However, secondary reaction occurs mostly in the freeboard. Therefore, it is considered that bubble behavior and particle motions hardly influences on the secondary reaction.

Floating Photovoltaic Plant Location Analysis using GIS (GIS를 활용한 수상 태양광 발전소 입지 분석)

  • Lee, Ki Rim;Lee, Won Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.1
    • /
    • pp.51-59
    • /
    • 2016
  • Global consumption of fossil fuels continues to increase. As developing countries use fossil fuel as much as the existing fossil fuel using countries, the total amount of fossil fuel consumed has risen. The finite fossil energy depletion insecurity have become serious. In addition, fossil energy is caused by environmental pollution, economic and social problems remain in assignments that need to be addressed. Although solar power is clean and has many benefits, there are several problems in the process of installing a solar power plant. To solve these problems, floating photovoltaic plants has emerged as an alternative. This floating photovoltaic plants location analysis has not been made yet. In this study, the conditions of the floating photovoltaic plants location is analyzed with the Analytic Hierarchy Process using the terrain and climate factors. The score is assigned to the attribute information of each factor by the classification table. After multiplied by the weight the result is analyzed by visualization of the score. As the result, the score of the northen part of Gyeongsangbuk-do province is higher than the southern part of Gyeongsangbuk-do province. Especially Andongho lake in Andong City and the reservoir in Yeongyang-Gun are extracted as the optimal location. The score of the river boundary is low not the center of the river stream. It is expected that this study would be a more accurate floating solar power plant location analysis.

A Study on Disposal Diagnosis Algorithm of PV Modules Considering Performance Degradation Rate (태양광모듈의 성능저하율을 고려한 폐기진단 알고리즘에 관한 연구)

  • Park, Ji-Hyun;Lee, Hu-Dong;Tae, Dong-Hyun;Ferreira, Marito;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.10
    • /
    • pp.493-502
    • /
    • 2019
  • Recently, the installation of renewable energy including PV systems in distribution systems has increased energetically to cope with climate change and energy shortages according to the government's policy of renewable energy 3020. On the other hand, the electrical performance and lifespan of PV modules installed outdoors can be decreased considerably due to a range of deterioration phenomena depending on the ambient environmental factors. To overcome these problems, replacement of degraded PV modules with new ones is increased before the lifespan guaranteed by the makers of PV modules. Therefore, this paper proposes a disposal diagnosis algorithm to evaluate the time interval of the optimal replacement for PV modules according to performance degradation rate of PV modules. In addition, this study modeled an economic evaluation, which is composed of the cost and benefit of PV systems. From the simulation results based on the proposed modeling and algorithm to consider the performance degradation rate specifically, the replacement approach was found to have the best B/C ratio in 10th year with a 3[%] degradation rate and the disposal diagnosis algorithm of PV modules are useful and practical tools for economic evaluations of the replacement of PV modules.

A Study on the Environment-friendly Planning Elements on High-Class Houses Kuangajeong in Chosun Dynasty (관가정(觀稼亭)으로 본 조선시대 상류주택의 환경친화적 계획요소 분석)

  • Heo, Jun;Lee, Shi Young;Song, Byeong Hwa
    • Korean Journal of Heritage: History & Science
    • /
    • v.44 no.3
    • /
    • pp.164-177
    • /
    • 2011
  • This study aims to examine the traditional living space to reflect the environment-friendly design methods and principles of reestablishment. To do so, this study carried on a related literature study and field survey. The traditional living space in terms of the environmental friendliness is reflected on site selection and space composition, and utilization of natural energy and natural materials. Focused on the Kwangajeong in Yangdong Village, this study is to identify eco-friendly techniques on the traditional living space. As a result, it shows that Kwangajeong with the side of the southeast in site selection had been considered in aspect of environmental control such as sunshine and solar radiation. Also building construction techniques had been used to minimize the variation of terrain. In aspect of environmental conservation, Kwangajeong had structurally arranged the gate, an inner yard and an inner floor to allow good ventilation. In aspect of space composition, Kwangajeong with the emphasis of scenic view had utilized the methods that attract external landscape through the control of its fences. Environment-friendly techniques and control principles in traditional space had been developed by a long experience through the long periods and the traditional techniques suitable for local climate and local environment have been developed. The technical development of these techniques to resolve the global environmental and energy issues and create a more pleasant living environment of human beings might be critical.