• Title/Summary/Keyword: Climate Energy

Search Result 1,588, Processing Time 0.04 seconds

Performance Analysis of Adiabatic Reactor in Thermochemical Carbon Dioxide Methanation Process for Carbon Neutral Methane Production (탄소중립 메탄 생산을 위한 열화학적 이산화탄소 메탄화 공정의 단열 반응기 성능 분석)

  • JINWOO KIM;YOUNGDON YOO;MINHYE SEO;JONGMIN BAEK;SUHYUN KIM
    • Journal of Hydrogen and New Energy
    • /
    • v.34 no.3
    • /
    • pp.316-326
    • /
    • 2023
  • Development of carbon-neutral fuel production technologies to solve climate change issues is progressing worldwide. Among them, methane can be produced through the synthesis of hydrogen produced by renewable energy and carbon dioxide captured through a CO2 methanation reaction, and the fuel produced in this way is called synthetic methane or e-methane. The CO2 methanation reaction can be conducted via biological or thermochemical methods. In this study, a 30 Nm3/h thermochemical CO2 methanation process consisting of an isothermal reactor and an adiabatic reactor was used. The CO2 conversion rate and methane concentration according to the temperature measurement results at the center and outside of the adiabatic reactor were analyzed. The gas flow into the adiabatic reactor was found to reach equilibrium after about 1.10 seconds or more by evaluating the residence time. Furthermore, experimental and analysis results were compared to evaluate performance of the reactor.

Calculating the Sunlight Amount for Buildings Using SAS: A Case Study of Gyeongsan City (그림자 분석 시뮬레이션을 활용한 건축물별 일조량 산정 - 경산시를 사례로)

  • Kim, Do-Ryeong;Kim, Sung-Jae;Han, Soo-Hee;Jo, Myung-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.1
    • /
    • pp.159-172
    • /
    • 2014
  • As greenhouse gas emissions have been increasing in the world, global warming is being recognized as a cause of the global problems like climate change. This is closely associated the fossil fuels. Thus renewable energy has been brought to the attention of many people as the upcoming alternative energy source to cope with the fossil drain and increased environmental regulations. Especially, the solar energy among renewable energy has drastically increased. In this study, we calculate on daylight ratio about the solar energy for buildings based on digital surface model. The digital surface model was made using the spatial information data. And it was simulated the shadow analysis using SAS. Therefore, it was suitable places to utilize the solar energy in the Gyeongsan city. Consequently, the daylight ratio was considered important factor to select region of the industry of the solar light power generation.

Study on Internal Reforming Characteristic of 1 kW Solid Oxide Fuel Cell Stack (1 kW 고체산화물 연료전지 스택의 내부개질 특성 연구)

  • CHOI, YOUNGJAE;AHN, JINSOO;LEE, INSUNG;BAE, HONGYOUL;MOON, JIWOONG;LEE, JONGGYU
    • Journal of Hydrogen and New Energy
    • /
    • v.28 no.4
    • /
    • pp.377-383
    • /
    • 2017
  • This paper presents the performance characteristics of a 1 kW solid oxide fuel cell (SOFC) stack under various internal reforming and fuel utilization conditions. The Research Institute of Industrial Science & Technology (RIST) developed the 9-cell stack using a $20{\times}20cm^2$ anode supported planar cell with an active area of $324cm^2$. In this work, current-voltage characteristic test, fuel utilization test, continuous operation, and internal reforming test were carried out sequentially for 765 hours at a furnace temperature of $700^{\circ}C$. The influence of fuel utilization and internal reforming on the stack performance was analyzed. When the 1 kW stack was tested at a current of 145.8 A with a corresponding fuel utilization of 50-70% (internal reforming of 50%) and air utilization of 27%, the stack power was approximately 1.062-1.079 kW. Under continuous operation conditions, performance degradation rate was 2.16%/kh for 664 hours. The internal reforming characteristics of the stack were measured at a current of 145.8. A with a corresponding fuel utilization of 60-75%(internal reforming of 50-80%) and air utilization of 27%. As fuel utilization and internal reforming ratio increased, the stack power was decreased. The stack power change due to the internal reforming ratio difference was decreased with increasing fuel utilization.

Prediction Model for Gas-Energy Consumption using Ontology-based Breakdown Structure of Multi-Family Housing Complex (온톨로지 기반 공동주택 분류체계를 활용한 가스에너지 사용량 예측 모델)

  • Hong, Tae-Hoon;Park, Sung-Ki;Koo, Choong-Wan;Kim, Hyun-Joong;Kim, Chun-Hag
    • Korean Journal of Construction Engineering and Management
    • /
    • v.12 no.6
    • /
    • pp.110-119
    • /
    • 2011
  • Global warming caused by excessive greenhouse gas emission is causing climate change all over the world. In Korea, greenhouse gas emission from residential buildings accounts for about 10% of gross domestic emission. Also, the number of deteriorated multi-family housing complexes is increasing. Therefore, the goal of this research is to establish the bases to manage energy consumption continuously and methodically during MR&R period of multi-family housings. The research process and methodologies are as follows. First, research team collected the data on project characteristics and energy consumption of multi-family housing complexes in Seoul. Second, an ontology-based breakdown structure was established with some primary characteristics affecting the energy consumption, which were selected by statistical analysis. Finally, a predictive model of energy consumption was developed based on the ontology-based breakdown structure, with application of CBR, ANN, MRA and GA. In this research, PASW (Predictive Analytics SoftWare) Statistics 18, Microsoft EXCEL, Protege 4.1 were utilized for data analysis and prediction. In future research, the model will be more continuous and methodical by developing the web-base system. And it has facility manager of government or local government, or multi-family housing complex make a decision with definite references regarding moderate energy consumption.

A Study on Design of Optimal Location for Renewable Energy Facility Using GIS (GIS를 사용한 재생에너지설비 최적 위치 설계에 관한 연구)

  • Jung, Moon-Seon;Moon, Chae-Joo;Chang, Young-Hak;Kim, Young-Gon;Lee, Sook-Hee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.2
    • /
    • pp.357-368
    • /
    • 2018
  • For well over 100 years, oil has enabled remote communities to generate electricity and enjoy the benefits of a consistent electrical supply. Relying solely on oil for electricity generation has left island and remote communities exposed to several risks and drawbacks. Oil-based electricity generation is often more expensive and subject to price volatility, which can result in the use of risky fuel hedging strategies. The residents of islands and remote communities express concern over the future impacts of climate change or insist on their opinions for the corresponding action with reduction of carbon emissions. These risks and drawbacks can be overcomed with continuing cost reductions in solar, wind, and energy storage technologies by maker. Reducing costs is not always a straightforward process, relying on more diversely and renewably arranged renewable energy sources led to reduced local construction cost in every situation reviewed in this study. In this paper, a convenient and simple design solution which will facilitate the optimum location and transmission route of renewable energy facility using GIS(Geographic Information System) is proposed. The suggested solutions exercised to the case of geomoon island using GIS and identified by local site survey.

A Review on SEBS Block Copolymer based Anion Exchange Membranes for Water Electrolysis (SEBS 블록 공중합체를 기반으로 한 수전해용 음이온 교환막에 대한 총설)

  • Kim, Ji Eun;Park, Hyeonjung;Choi, Yong Woo;Lee, Jae Hun
    • Membrane Journal
    • /
    • v.32 no.5
    • /
    • pp.283-291
    • /
    • 2022
  • Hydrogen energy has received much attention as a solution to the supply of renewable energy and to respond to climate change. Hydrogen is the most suitable candidate of storing unused electric power in a large-capacity long cycle. Among the technologies for producing hydrogen, water electrolysis is known as an eco-friendly hydrogen production technology that produces hydrogen without carbon dioxide generation by water splitting reaction. Membranes in water electrolysis system physically separate the anode and the cathode, but also prevent mixing of generated hydrogen and oxygen gases and facilitate ion transfer to complete circuit. In particular, the key to next-generation anion exchange membrane that can compensate for the shortcomings of conventional water electrolysis technologies is to develop high performance anion exchange membrane. Many studies are conducted to have high ion conductivity and excellent durability in an alkaline environment simultaneously, and various materials are being searched. In this review, we will discuss the research trends and points to move forward by looking at the research on anion exchange membranes based on commercial polystyrene-b-poly(ethylene-co-butylene)-b-polystyrene (SEBS) block copolymers.

The Weather Characteristics of Frost Occurrence Days for Protecting Crops against Frost Damage (서리 피해 방지를 위한 서리 발생일의 기상 특성에 대한 연구)

  • Kwon, Young-Ah;Lee, Hyo-Shin;Kwon, Won-Tae;Boo, Kyung-On
    • Journal of the Korean Geographical Society
    • /
    • v.43 no.6
    • /
    • pp.824-842
    • /
    • 2008
  • The main objective of the study was to analyze the weather conditions of frost occurrence for protecting crops against frost damage in Korea. The primary data used for the analysis of meteorological characteristics of frost occurrence days are the airmass pattern, minimum temperature, grass minimum temperature, daily temperature range, relative humidity, minimum relative humidity, mean wind speed in autumn and spring. Frost often occurs when the migratory anticyclone passes the southwest of Korea. The importance of grass minimum temperature measurements for agricultural purposes has previously been recognized. The grass minimum thermometer is capable of detecting ground frosts which are often not recorded by the minimum thermometer. The minimum temperature of frost occurrence days is above $0^{\circ}C$ in the coastal area, but the grass minimum temperature of frost occurrence days is below $0^{\circ}C$ in the whole area. The daily temperature of frost occurrence days is about 9 to $12^{\circ}C$ in the coastal area and is over $14^{\circ}C$ in the inland area. The minimum relative humidity of frost occurrence days is about 30 to 50%. The mean wind speed of frost occurrence days is less than 2m/sec.

Relationship Analysis on the Monitoring Period and Parameter Estimation Error of the Coastal Wave Climate Data (연안 파랑 관측기간과 모수추정 오차 관계분석)

  • Cho, Hongyeon;Jeong, Weon-Mu;Jun, Ki Cheon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.1
    • /
    • pp.34-39
    • /
    • 2013
  • In this study, the quantitative analysis and pattern analysis of the error bounds with respect to recording period were carried out using the wave climate data from coastal areas. Arbitrary recording periods were randomly sampled from one month to six years using the bootstrap method. Based on the analysis, for recording periods less than one year, it was found that the error bounds decreased rapidly as the recording period increased. Meanwhile, the error bounds were found to decrease more slowly for recording periods longer than one year. Assuming the absolute estimate error to be around 10% (${\pm}0.1m$) for an one meter significant wave height condition, the minimum recording period for reaching the estimate error for Sokcho and Geoje-Hongdo stations satisfied this condition with over two years of data, while Anmado station was found to satisfy this condition when using observational data of over three years. The confidence intervals of the significant wave height clearly show an increasing pattern when the percentile value of the wave height increases. Whereas, the confidence intervals of the mean wave period are nearly constant, at around 0.5 seconds except for the tail regions, i.e., 2.5- and 97.5-percentile values. The error bounds for 97.5-percentile values of the wave height necessary for harbor tranquility analysis were found to be 0.75 m, 0.5 m, and 1.2 m in Sokcho, Geoje-Hongdo, and Anmado, respectively.

Development of a Conjunctive Surface-Subsurface Flow Model for Use in Land Surface Models at a Large Scale: Part II. Model Implementation (대규모 육지수문모형에서 사용 가능한 지표면 및 지표하 연계 물흐름 모형의 개발: II. 모형적용)

  • Choi, Hyun-Il
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.3
    • /
    • pp.23-27
    • /
    • 2008
  • The new conjunctive surface-subsurface flow model at a large scale was developed by using a 1-D Diffusion Wave (DW) model for surface flow interacting with the 3-D Volume Averaged Soil-moisture Transport (VAST) model for subsurface flow for the comprehensive terrestrial water and energy predictions in Land Surface Models (LSMs). A selection of numerical implementation schemes is employed for each flow component. The 3-D VAST model is implemented using a time splitting scheme applying an explicit method for lateral flow after a fully implicit method for vertical flow. The 1-D DW model is then solved by MacCormack finite difference scheme. This new conjunctive flow model is substituted for the existing 1-D hydrologic scheme in Common Land Model (CLM), one of the state-of-the-art LSMs. The new conjunctive flow model coupled to CLM is tested for a study domain around the Ohio Valley. The simulation results show that the interaction between surface flow and subsurface flow associated with the flow routing scheme matches the runoff prediction with the observations more closely in the new coupled CLM simulations. This improved terrestrial hydrologic module will be coupled to the Climate extension of the next-generation Weather Research and Forecasting (CWRF) model for advanced regional, continental, and global hydroclimatological studies and the prevention of disasters caused by climate changes.

Combining Bias-correction on Regional Climate Simulations and ENSO Signal for Water Management: Case Study for Tampa Bay, Florida, U.S. (ENSO 패턴에 대한 MM5 강수 모의 결과의 유역단위 성능 평가: 플로리다 템파 지역을 중심으로)

  • Hwang, Syewoon;Hernandez, Jose
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.14 no.4
    • /
    • pp.143-154
    • /
    • 2012
  • As demand of water resources and attentions to changes in climate (e.g., due to ENSO) increase, long/short term prediction of precipitation is getting necessary in water planning. This research evaluated the ability of MM5 to predict precipitation in the Tampa Bay region over 23 year period from 1986 to 2008. Additionally MM5 results were statistically bias-corrected using observation data at 33 stations over the study area using CDF-mapping approach and evaluated comparing to raw results for each ENSO phase (i.e., El Ni$\tilde{n}$o and La Ni$\tilde{n}$a). The bias-corrected model results accurately reproduced the monthly mean point precipitation values. Areal average daily/monthly precipitation predictions estimated using block-kriging algorithm showed fairly high accuracy with mean error of daily precipitation, 0.8 mm and mean error of monthly precipitation, 7.1 mm. The results evaluated according to ENSO phase showed that the accuracy in model output varies with the seasons and ENSO phases. Reasons for low predictions skills and alternatives for simulation improvement are discussed. A comprehensive evaluation including sensitivity to physics schemes, boundary conditions reanalysis products and updating land use maps is suggested to enhance model performance. We believe that the outcome of this research guides to a better implementation of regional climate modeling tools in water management at regional/seasonal scale.