• Title/Summary/Keyword: Climate Change Mitigation

Search Result 308, Processing Time 0.021 seconds

Economic Feasibility of REDD Project for Preventing Deforestation in North Korea (북한 산림전용 방지수단으로서의 REDD 사업의 경제적 타당성 분석)

  • Jo, Jang Hwan;KOO, Ja Choon;Youn, Yeo Chang
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.4
    • /
    • pp.630-638
    • /
    • 2011
  • This study aims to verify the economic validity of the REDD project in North Korea by estimating the potential carbon credits and the cost of REDD project. The REDD potential credits of North Korea are estimated based on the international statistics of forest area and population from 1990 to 2010, and the cost of REDD project is estimated indirectly by annual land opportunity cost of agriculture assuming that South Korea will aid the food production per area in North Korea. When the 25% reduction scenario was applied to the annual deforestation rate in North Korea, the potential REDD credits were estimated to be $4,232million{\sim}5,290milliontCO_2eq.$ for 20 years. It would account for 28~35% of South Korea's national medium-term greenhouse gas reduction target. On the other hand, the break-even price of REDD project was calculated as the profit of agriculture in the land available by forest conversion in North Korea. It was estimated to be 19.19$/$tCO_2eq.$ when the non-permanence risk of forest conserved through a REDD contract is assumed to be 20%. This price is higher than the price of REDD carbon credit 5$/$tCO_2eq.$ dealt in the 2010 voluntary carbon market, leading to no economic feasibility. However, REDD project provides co-benefits besides climate mitigation. As previous studies indicate, the break-even price is lower than 20$/$tCO_2eq.$, which is the social marginal cost of greenhouse gas emissions by loss of forest. Therefore REDD in North Korea can be justified against the social benefits. The economic feasibility of REDD project in North Korea can be largely influenced by the risk percentage. Thus, North Korean REDD project needs a strong guarantee and involvement by the government and people of North Korea to assure the project's economic feasibility.

Evaluation for Rock Cleavage Using Distribution of Microcrack Lengths and Spacings (1) (미세균열의 길이 및 간격 분포를 이용한 결의 평가(1))

  • Park, Deok-Won
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.1
    • /
    • pp.45-54
    • /
    • 2017
  • The characteristics of the rock cleavage in Jurassic Geochang granite were analysed using the distribution of microcrack lengths and spacings. The phases of distribution of the above lengths and spacings were derived from the enlarged photomicrographs(${\times}6.7$) of the thin section. First, the length and spacing-cumulative diagrams for the six directions of rock cleavages were arranged in increasing order($H2{\rightarrow}R1$) on the density(${\rho}$) of microcrack length. The various parameters were extracted through the combination of the above two types of diagrams. The discrimination factors representing the three quarrying planes and three rock cleavages were acquired through the mutual contrast between the values of parameters. The analysis results of the research are summarized as follows. The evaluation for the six directions of rock cleavages was performed using the parameters such as (1) intersection angle(${\alpha}-{\beta}$) and (2) exponent difference(${\lambda}_S-{\lambda}_L$) between two exponential straight lines related to spacing(${\alpha}$, ${\lambda}_S$) and length(${\beta}$, ${\lambda}_L$). The values of parameters(1 and 2) are in order of H(hardway, (H1 + H2)/2) < G(grain, (G1 + G2)/2) < R(rift, (R1 + R2)/2). On the contrary, the values of the above two parameters for three planes are in order of R < G < H. Meanwhile, the direction of convergence between two exponential straight lines was derived. The above direction is compliant to arrangement of the line os' centering around the line ol. The above two lines converge in the direction of the Y-axis when the line ol and line os' occupy the upper region on the left and the lower region on the right, respectively(R-type). On the contrary, the above two lines converge in the direction of the X-axis when the order of arrangement between line ol and line os' is reversed(H-type). Especially, the positive(+) or negative(-) value of intersection angle(${\alpha}-{\beta}$) is determined by the arrangement of two vertical lines. This type of correlation analysis is useful for evaluating the relative strength of rock cleavage and discriminating three quarrying planes.

Evaluation for Rock Cleavage Using Distribution of Microcrack Spacings (V) (미세균열의 간격 분포를 이용한 결의 평가(V))

  • Park, Deok-Won
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.3
    • /
    • pp.297-309
    • /
    • 2017
  • Jurassic granite from Geochang was analysed with respect to the characteristics of the rock cleavage. The comprehensive evaluation for rock cleavages was performed through the combination of the 16 parameters derived from the enlarged photomicrographs of the thin section and the spacing-cumulative frequency diagrams. The results of analysis for the representative values of these spacing parameters with respect to the rock cleavage are summarized as follows. First, the above parameters can be classified into group I (spacing frequency (N), total spacing ($1m{\geq}$), constant (a), exponent (${\lambda}$), slope of exponential straight line (${\theta}$), length of line (oa') and trigonometric ratios ($sin{\theta}$, $tan{\theta}$) and group II (mean spacing (Sm), difference value between mean spacing and median spacing (Sm-Sme), density (${\rho}$), lengths of lines (oa and aa'), area of a right-angled triangle (${\Delta}oaa^{\prime}$) and trigonometric ratio($cos{\theta}$). The values of the 8 parameters belonging to group I show an order of H(hardway, H1+H2)

Evaluation for Rock Cleavage Using Distribution of Microcrack Lengths and Spacings (2) (미세균열의 길이 및 간격 분포를 이용한 결의 평가(2))

  • Park, Deok-Won
    • The Journal of the Petrological Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.1-15
    • /
    • 2018
  • The characteristics of the rock cleavage of Jurassic Geochang granite were analysed using the distribution of microcrack lengths and spacings. The length and spacing-cumulative diagrams for the six directions of rock cleavages were arranged in increasing order ($H2{\rightarrow}R1$) on the density (${\rho}$) of microcrack length. The various parameters were extracted through the combination of above two types of diagrams. The evaluation for the six directions of rock cleavages was performed using the four groups (I~IV) of parameters such as (I) intersection angle (${\alpha}-{\beta}$), exponent difference (${\lambda}_S-{\lambda}_L$), length of line (ol and ll'), length ratio (ol/os and ll'/sl'), mean length ((ss'+ll')/2), area of right-angled triangle (${\Delta}oaa_a^{\prime}$ and ${\Delta}obb_a^{\prime}$) and area difference (${\Delta}obb^{\prime}-{\Delta}oaa^{\prime}$ and ${\Delta}obb_a^{\prime}-{\Delta}oaa_a^{\prime}$), (II) length of line (oa and os) and area (${\Delta}oaa^{\prime}$), (III) length of line (sl') and length ratio (ss'/ll') and (IV) length of line (ob, ss' and ls') and area (${\Delta}obb^{\prime}$, ${\Delta}ll^{\prime}s^{\prime}$, ${\Delta}ss^{\prime}l^{\prime}$ and ⏢ll'ss'). The results of correlation analysis between the values of parameters for three rock cleavages and those for three planes are as follows. The values of parameters for three rock cleavages are in orders of (I) H(hardway, (H1 + H2)/2) < G(grain, (G1 + G2)/2) < R(rift, (R1 + R2)/2), (II) R < G < H, (III) G < H < R and (IV) H < G < R. On the contrary, the values of parameters for three planes are in orders of (I) R' < G' < H', (II) H' < G' < R' and (III and IV) R' < H' < G'. Especially the values of parameters belonging to group I and group II show mutual reverse orders. In conclusion, this type of correlation analysis is useful for discriminating three quarrying planes.

Evaluation for Rock Cleavage Using Distribution of Microcrack Spacings (IV) (미세균열의 간격 분포를 이용한 결의 평가(IV))

  • Park, Deok-Won
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.2
    • /
    • pp.127-141
    • /
    • 2017
  • Jurassic granite from Geochang was analysed with respect to the characteristics of the rock cleavage. The multicriteria evaluation for the six directions of rock cleavages was performed using the microcrack spacing-related parameters derived from the enlarged photomicrographs (${\times}6.7$) of the thin section and the spacing-cumulative frequency diagrams. The results of analysis for the representative values of these spacing parameters with respect to the rock cleavage are summarized as follows. First, the analysis for deriving the main parameter indicating the order of arrangement among six diagrams was performed. The values of five parameters with respect to six directions of the rock cleavages were arranged in increasing or decreasing order for the above analysis. The decreasing order of the values of main parameter(mean spacing-median spacing, $S_{mean}-S_{median}$) and mean spacing are consistent with the order of H1, H2, G1, G2, R1 and R2 directions. These sequential arrangements of six directions of the rock cleavages can provide a basis for those of the six diagrams related to spacing. Second, the nine correlation charts between the above main parameter and various parameters were arranged in decreasing order of correlation coefficient ($R^2$). These related charts shows a high correlation of power-law function in common. The values of mean spacing, density (${\rho}$) and length of line oa are directly proportional to the value of main parameter, while the values of constant (a), exponent (${\lambda}$), spacing frequency (N), length of line oa', slope of exponential straight line (${\theta}$) and total length ($1mm{\geq}$) are inverse proportional. Third, the results of correlation analysis between the values of parameters for three planes and those for three rock cleavages are as follows. The values of frequency, total spacing, constant, exponent, slope and length of line oa' for three planes and three rock cleavages show an order of R' < G' < H' and H < G < R, respectively. On the other hand, the values of mean spacing, (mean spacing-median spacing), density and length of line oa show an order of H' < G' < R' and R < G < H, respectively. The correlation of the mutually reverse order of the values of parameters between three planes and three rock cleavages can be drawn. This type of correlation analysis is useful for discriminating three quarrying planes.

Detection of flash drought using evaporative stress index in South Korea (증발스트레스지수를 활용한 국내 돌발가뭄 감지)

  • Lee, Hee-Jin;Nam, Won-Ho;Yoon, Dong-Hyun;Mark, D. Svoboda;Brian, D. Wardlow
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.8
    • /
    • pp.577-587
    • /
    • 2021
  • Drought is generally considered to be a natural disaster caused by accumulated water shortages over a long period of time, taking months or years and slowly occurring. However, climate change has led to rapid changes in weather and environmental factors that directly affect agriculture, and extreme weather conditions have led to an increase in the frequency of rapidly developing droughts within weeks to months. This phenomenon is defined as 'Flash Drought', which is caused by an increase in surface temperature over a relatively short period of time and abnormally low and rapidly decreasing soil moisture. The detection and analysis of flash drought is essential because it has a significant impact on agriculture and natural ecosystems, and its impacts are associated with agricultural drought impacts. In South Korea, there is no clear definition of flash drought, so the purpose of this study is to identify and analyze its characteristics. In this study, flash drought detection condition was presented based on the satellite-derived drought index Evaporative Stress Index (ESI) from 2014 to 2018. ESI is used as an early warning indicator for rapidly-occurring flash drought a short period of time due to its similar relationship with reduced soil moisture content, lack of precipitation, increased evaporative demand due to low humidity, high temperature, and strong winds. The flash droughts were analyzed using hydrometeorological characteristics by comparing Standardized Precipitation Index (SPI), soil moisture, maximum temperature, relative humidity, wind speed, and precipitation. The correlation was analyzed based on the 8 weeks prior to the occurrence of the flash drought, and in most cases, a high correlation of 0.8(-0.8) or higher(lower) was expressed for ESI and SPI, soil moisture, and maximum temperature.

Distributional Characteristics of Fault Segments in Cretaceous and Tertiary Rocks from Southeastern Gyeongsang Basin (경상분지 남동부 일대의 백악기 및 제3기 암류에서 발달하는 단층분절의 분포특성)

  • Park, Deok-Won
    • The Journal of the Petrological Society of Korea
    • /
    • v.27 no.3
    • /
    • pp.109-120
    • /
    • 2018
  • The distributional characteristics of fault segments in Cretaceous and Tertiary rocks from southeastern Gyeongsang Basin were derived. The 267 sets of fault segments showing linear type were extracted from the curved fault lines delineated on the regional geological map. First, the directional angle(${\theta}$)-length(L) chart for the whole fault segments was made. From the related chart, the general d istribution pattern of fault segments was derived. The distribution curve in the chart was divided into four sections according to its overall shape. NNE, NNW and WNW directions, corresponding to the peaks of the above sections, indicate those of the Yangsan, Ulsan and Gaeum fault systems. The fault segment population show near symmetrical distribution with respect to $N19^{\circ}E$ direction corresponding to the maximum peak. Second, the directional angle-frequency(N), mean length(Lm), total length(Lt) and density(${\rho}$) chart was made. From the related chart, whole domain of the above chart was divided into 19 domains in terms of the phases of the distribution curve. The directions corresponding to the peaks of the above domains suggest the directions of representative stresses acted on rock body. Third, the length-cumulative frequency graphs for the 18 sub-populations were made. From the related chart, the value of exponent(${\lambda}$) increase in the clockwise direction($N10{\sim}20^{\circ}E{\rightarrow}N50{\sim}60^{\circ}E$) and counterclockwise direction ($N10{\sim}20^{\circ}W{\rightarrow}N50{\sim}60^{\circ}W$). On the other hand, the width of distribution of lengths and mean length decrease. The chart for the above sub-populations having mutually different evolution characteristics, reveals a cross section of evolutionary process. Fourth, the general distribution chart for the 18 graphs was made. From the related chart, the above graphs were classified into five groups(A~E) according to the distribution area. The lengths of fault segments increase in order of group E ($N80{\sim}90^{\circ}E{\cdot}N70{\sim}80^{\circ}E{\cdot}N80{\sim}90^{\circ}W{\cdot}N50{\sim}60^{\circ}W{\cdot}N30{\sim}40^{\circ}W{\cdot}N40{\sim}50^{\circ}W$) < D ($N70{\sim}80^{\circ}W{\cdot}N60{\sim}70^{\circ}W{\cdot}N60{\sim}70^{\circ}E{\cdot}N50{\sim}60^{\circ}E{\cdot}N40{\sim}50^{\circ}E{\cdot}N0{\sim}10^{\circ}W$) < C ($N20{\sim}30^{\circ}W{\cdot}N10{\sim}20^{\circ}W$) < B ($N0{\sim}10^{\circ}E{\cdot}N30{\sim}40^{\circ}E$) < A ($N20{\sim}30^{\circ}E{\cdot}N10{\sim}20^{\circ}E$). Especially the forms of graph gradually transition from a uniform distribution to an exponential one. Lastly, the values of the six parameters for fault-segment length were divided into five groups. Among the six parameters, mean length and length of the longest fault segment decrease in the order of group III ($N10^{\circ}W{\sim}N20^{\circ}E$) > IV ($N20{\sim}60^{\circ}E$) > II ($N10{\sim}60^{\circ}W$) > I ($N60{\sim}90^{\circ}W$) > V ($N60{\sim}90^{\circ}E$). Frequency, longest length, total length, mean length and density of fault segments, belonging to group V, show the lowest values. The above order of arrangement among five groups suggests the interrelationship with the relative formation ages of fault segments.

Evaluation for Rock Cleavage Using Distribution of Microcrack Spacings (III) (미세균열의 간격 분포를 이용한 결의 평가 (III))

  • Park, Deok-Won
    • The Journal of the Petrological Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.311-324
    • /
    • 2016
  • The characteristics of the rock cleavage in Jurassic granite from Geochang were analysed. The evaluation for three quarrying planes and three rock cleavages was performed using the parameters such as (1) reduction ratio between the value of spacing and the value of length, (2) microcrack spacing frequency(N), (3) total spacing($1mm{\geq}$), (4) exponential constant(a), (5) magnitude of exponent(${\lambda}$), (6) mean spacing($S_{mean}$), (7) difference value($S_{mean}-S_{median}$) between mean spacing and median spacing($S_{median}$) and (8) density of spacing. Especially the close dependence between the above spacing parameters and the parameters from the spacing-cumulative frequency diagrams was derived. The discrimination factors representing three quarrying planes and three rock cleavages were acquired through these mutual contrast. The analysis results of the research are summarized as follows. First, the reduction ratios of frequency(N), mean value, median value, the above difference value($S_{mean}-S_{median}$) and density for three rock cleavages are in orders of G(grain, (G1 + G2)/2) < H(hardway, (H1 + H2)/2) < R(rift, (R1 + R2)/2), H < G $\ll$ R, H < G $\ll$ R, H < G < R and H < G $\ll$ R. The values of the above five parameters for three planes show the various orders of R'(rift plane) $\ll$ H'(hardway plane) < G'(grain plane), R' $\ll$ G' < H', R' < H' < G', R' < G' < H' and R' $\ll$ H' < G', respectively. Second, the values of (I) parameters(2, 3, 4 and 5) and (II) parameters(6, 7 and 8) are in orders of (I) H < G < R and (II) R < G < H. On the contrary, the values of the above two groups(I~II) of parameters for three planes show reverse orders. Third, to review the overall characteristics of the arrangement among the six diagrams, these diagrams show an order of R2 < R1 < G2 < G1 < H2 < H1 from the related chart. In other words, above six diagrams can be summarized in order of rift(R1 + R2) < grain(G1 + G2) < hardway(H1 + H2). These results indicate a relative magnitude of rock cleavage related to microcrack spacing. Especially, two parameters for each diagram, the above difference value($S_{mean}-S_{median}$) and mean spacing, could provide advanced information for prediction the order of arrangement among the diagrams. Finally, the general chart for three planes and three rock cleavages were made. From the related chart, three exponential straight lines for three rock cleavages show an order of R(R1 + R2) < G(G1 + G2) < H(H1 + H2). On the contrary, three lines for three planes show an order of H'(R2 + G2) < G'(R1 + H2) < R'(G1 + H1). Consequently, correlation of the mutually reverse order between three planes and three rock cleavages can be drawn from the related chart.