DOI QR코드

DOI QR Code

미세균열의 길이 및 간격 분포를 이용한 결의 평가(1)

Evaluation for Rock Cleavage Using Distribution of Microcrack Lengths and Spacings (1)

  • 박덕원 (한국지질자원연구원 전략기술연구본부)
  • Park, Deok-Won (Climate Change Mitigation and Sustainability Division, Korea Institute of Geoscience and Mineral Resources)
  • 투고 : 2017.03.10
  • 심사 : 2017.03.29
  • 발행 : 2017.03.31

초록

미세균열의 길이와 간격의 분포를 이용하여 쥬라기 거창화강암에서 발달하는 결의 특성을 분석하였다. 상기 길이와 간격에 대한 분포상은 박편의 확대사진(${\times}6.7$)에서 도출하였다. 일차적으로, 여섯 방향의 결에 대한 길이 및 간격-누적빈도 도표를 미세균열의 길이의 밀도가 증가하는 순(($H2{\rightarrow}R1$)으로 배열하였다. 상기 두 종류의 도표의 결합을 통하여 다양한 파라미터를 추출하였다. 3개 채석면 및 3개 결을 대변하는 판별요소들은 파라미터의 값 사이의 상호 대비를 통하여 획득하였다. 이 연구의 분석 결과를 요약하면 다음과 같다. 여섯 방향의 결에 대한 평가는 간격(${\alpha}$, ${\lambda}_S$) 및 길이(${\beta}$, ${\lambda}_L$)와 관련된 두 지수 직선 사이의 (1) 교차각(${\alpha}-{\beta}$) 및 (2) 지수차(${\lambda}_S-{\lambda}_L$)과 같은 파라미터를 이용하여 수행하였다. 파라미터(1 및 2)의 값은 H(3번 결, (H1 + H2)/2) < G(2번 결, (G1 + G2)/2) < R(1번 결, (R1 + R2)/2)의 순서이다. 반면에 3개 면에 대한 상기 2개 파라미터의 값은 R < G < H의 순서이다. 한편, 두 지수 직선 사이의 수렴방향을 도출하였다. 상기 방향은 선 ol을 중심으로 하여 선 os'의 배치에 따른다. 선 ol이 좌측의 상부 영역 그리고 선 os'가 우측의 하부영역에 위치하는 경우, 상기 두 지수 직선은 Y축의 방향으로 수렴한다(R-유형). 반면에, 선 ol 및 선 os'의 배열순이 역전되었을 때에는 상기 두 선은 X축의 방향으로 수렴한다(H-유형). 특히, 두 수직선의 배열에 의하여 교차각(${\alpha}-{\beta}$)의 양(+) 혹은 음(-)의 값이 결정된다. 이러한 유형의 상관성 분석은 결의 상대적인 강도 평가 및 3개 채석면의 판별에 유용하다.

The characteristics of the rock cleavage in Jurassic Geochang granite were analysed using the distribution of microcrack lengths and spacings. The phases of distribution of the above lengths and spacings were derived from the enlarged photomicrographs(${\times}6.7$) of the thin section. First, the length and spacing-cumulative diagrams for the six directions of rock cleavages were arranged in increasing order($H2{\rightarrow}R1$) on the density(${\rho}$) of microcrack length. The various parameters were extracted through the combination of the above two types of diagrams. The discrimination factors representing the three quarrying planes and three rock cleavages were acquired through the mutual contrast between the values of parameters. The analysis results of the research are summarized as follows. The evaluation for the six directions of rock cleavages was performed using the parameters such as (1) intersection angle(${\alpha}-{\beta}$) and (2) exponent difference(${\lambda}_S-{\lambda}_L$) between two exponential straight lines related to spacing(${\alpha}$, ${\lambda}_S$) and length(${\beta}$, ${\lambda}_L$). The values of parameters(1 and 2) are in order of H(hardway, (H1 + H2)/2) < G(grain, (G1 + G2)/2) < R(rift, (R1 + R2)/2). On the contrary, the values of the above two parameters for three planes are in order of R < G < H. Meanwhile, the direction of convergence between two exponential straight lines was derived. The above direction is compliant to arrangement of the line os' centering around the line ol. The above two lines converge in the direction of the Y-axis when the line ol and line os' occupy the upper region on the left and the lower region on the right, respectively(R-type). On the contrary, the above two lines converge in the direction of the X-axis when the order of arrangement between line ol and line os' is reversed(H-type). Especially, the positive(+) or negative(-) value of intersection angle(${\alpha}-{\beta}$) is determined by the arrangement of two vertical lines. This type of correlation analysis is useful for evaluating the relative strength of rock cleavage and discriminating three quarrying planes.

키워드

참고문헌

  1. Chae, B.G. and Seo, Y.S., 2011, Homogenization analysis for estimating the elastic modulus and representative elementary volume of Inada granite in Japan. Geosciences Journal, 15, 387-394. https://doi.org/10.1007/s12303-011-0035-7
  2. Douglass, P.M. and Voight, B., 1969, Anisotropy of granites: A reflection of microscopic fabric. Geotechnique, 19, 376-398. https://doi.org/10.1680/geot.1969.19.3.376
  3. Freire-Lista, D.M. and Fort, R., 2015, Anisotropy in Alpedrete granite cutting (Rift, Grain and Hardway directions) and effect on bush hammered heritage ashlars. Geophysical Research Abstracts, 17, EGU2015-9426-1, EGU General Assembly.
  4. Jang, B.A., Kim, Y.H., Kim, J.D., and Rhee, C.G., 1998, Microcrack development in the Pocheon granite due to cyclic loading. The Journal of Engineering Geology, 8, 275-284.
  5. Jang, B.A. and Oh, S.H., 2001, Mechanical anisotropy development on the rock fabric in the Pocheon granite and its relationship with microcracks. The Journal of Engineering Geology, 11, 191-203.
  6. Kang, T.H., Kim, K.Y., Park, D.W., and Shin, H.S., 2014, Influence of anisotropy of microcrack distribution in Pocheon granite rock on elastic resonance characteristics. The Journal of Engineering Geology, 24, 363-372. https://doi.org/10.9720/kseg.2014.3.363
  7. Kim, D.H., Hwang, J.H., Park, K.H., and Song, K.Y., 1998, Geological report of the Pusan sheet (1:250,000). Korea Institute of Geology, Mining and Materials (KIGAM), 62p.
  8. Lee, B.D., Jang, B.A., Yun, H.S., Lee, H.Y., and Jin, M.S., 1999, Characteristics of microcrack development in granite of the Mungyeong area in Korea. The Journal of the Petrological Society of Korea, 8, 24-33.
  9. Lespinasse, M. and Pecher, A., 1986, Microfracturing and regional stress field:a study of the preferred orientations of fluid-inclusion planes in a granite from the Massif Central, France. Journal of Structual Geology, 8, 169-180. https://doi.org/10.1016/0191-8141(86)90107-0
  10. Park, D.W., 2005, Mechanical anisotropy of Pocheon granite under uniaxial compression. The Journal of Engineering Geology, 3, 337-348.
  11. Park, D.W., 2007, Orientations of vertical rift and grain planes in Mesozoic granites, Korea. The Journal of the Petrological Society of Korea, 16, 12-26.
  12. Park, D.W., 2011, Characteristics of the rock cleavage in Jurassic granite, Hapcheon. The Journal of the Petrological Society of Korea, 20, 219-230. https://doi.org/10.7854/JPSK.2011.20.4.219
  13. Park, D.W., 2015a, Characteristics of the rock cleavage in Jurassic Granite, Geochang. The Journal of the Petrological Society of Korea, 24, 149-160. https://doi.org/10.7854/JPSK.2015.24.3.149
  14. Park, D.W., 2015b, Evaluation for rock cleavage using distribution of microcrack lengths. The Journal of the Petrological Society of Korea, 24, 161-176.
  15. Park D.W. and Seo Y.S., 2003, Mechanical anisotropy of Jurassic granites in Korea. The Journal of Engineering Geology, 13, 257-266.
  16. Park, D.W., 2016a, Evaluation for Rock Cleavage Using Distribution of Microcrack Spacings (I). The Journal of the Petrological Society of Korea, 25, 13-27. https://doi.org/10.7854/JPSK.2016.25.1.13
  17. Park, D.W., 2016b, Evaluation for Rock Cleavage Using Distribution of Microcrack Spacings (II). The Journal of the Petrological Society of Korea, 25, 151-163. https://doi.org/10.7854/JPSK.2016.25.2.151
  18. Park, D.W., 2016c, Evaluation for Rock Cleavage Using Distribution of Microcrack Spacings (III). The Journal of the Petrological Society of Korea, 25, 311-324. https://doi.org/10.7854/JPSK.2016.25.4.311
  19. Park, D.W., Kim, H.C., Lee, C.B., Hong, S.S., Chang, S.W. and Lee, C.W., 2004, Characteristics of the rock cleavage in Jurassic granite, Pocheon. The Journal of the Petrological Society of Korea, 13, 133-141.
  20. Park, D.W., Seo, Y.S., Jeong, G.C., and Kim, Y.K., 2001, Microscopic analysis of the rock cleavage for Jurassic granite in Korea. The Journal of Engineering Geology, 11, 51-62.
  21. Peng, S.S. and Johnson, A.M., 1972, Crack growth and faulting in cylindrical specimens of Chelmsford granite. International Journal of Rock Mechanics and Mining, 9, 37-86. https://doi.org/10.1016/0148-9062(72)90050-2
  22. Plumb, R., Engelder, T., and Yale, D., 1984, Nearsurface insitu stress, 3. Correlation with microcrack fabric within the New Hampshire Granites. Journal of Geophysical Research, 89, 9350-9364. https://doi.org/10.1029/JB089iB11p09350
  23. Segall, P., 1984, Formation and growth of extensional fracture sets. Geological Society of America Bulletin, 95, 454-462. https://doi.org/10.1130/0016-7606(1984)95<454:FAGOEF>2.0.CO;2
  24. Seo Y.S. and Jeong, G.C., 1999, Micro-damage process in granite under the state of water-saturated triaxial compression. The Journal of Engineering Geology, 9, 243-251.
  25. Seo, Y.S., Jeong, G.C., Kim, J.S., and Ichikawa, Y., 2002, Microscopic observation and contact stress analysis of granite under compression. Engineering Geology, 63, 259-275. https://doi.org/10.1016/S0013-7952(01)00086-2
  26. Streckeisen, A.L., 1976, To each plutonic rocks and its proper name. Earth-science reviews, 12, 1-33. https://doi.org/10.1016/0012-8252(76)90052-0
  27. Thill, R.E., Bur, T.R., and Steckley, R.C., 1973, Velocity anisotropy in dry and saturated rock spheres and its relation to rock fabric. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 10, 535-557. https://doi.org/10.1016/0148-9062(73)90004-1
  28. Thill, R.E., Williard, R.J., and Bur, T.R., 1969, Correlation of longitudinal velocity variation with rock fabric. Journal of Geophysical Research, 74, 4898-4909.