• Title/Summary/Keyword: Climate Change Effects

Search Result 908, Processing Time 0.045 seconds

Effects of Temperature on the Development and Reproduction of Phaedon brassicae Baly (Coleoptera: Chrysomelidae) (좁은가슴잎벌레의 발육과 생식에 미치는 온도의 영향)

  • Jeong Joon Ahn;Kwang Ho Kim;Hong Hyun Park;Gwan Seok Lee;Jeong Hwan Kim;In-Hong Jeong
    • Korean journal of applied entomology
    • /
    • v.62 no.4
    • /
    • pp.315-323
    • /
    • 2023
  • The brassica leaf beetle, Phaedon brassicae Baly (Coleoptera: Chrysomelidae), is one of the important pests infesting cruciferous vegetables. In order to understand the biological characteristics of the insect, we investigated the effects of temperature on development of each life stage, adult longevity and fecundity of P. brassicae at four constant temperatures of 15, 20, 25 and 27.5℃ for immature life stage and five constant different temperatures of 10, 15, 20, 25 and 27.5℃ for adult stage. Eggs and larvae successfully developed next life stage at temperature tested. The development period of egg, larva, and pupa decreased as temperature increased. Lower developmental threshold (LDT) and thermal constant (K) were calculated using linear regression as 8.7℃ and 344.73DD, respectively. Lower and higher threshold temperature (TL and TH) from egg to adult emergence were estimated by Briere function as 5.3℃ and 40.4℃, respectively. Adults produced eggs at the temperature range between 10℃ and 27.5℃, and showed an estimated maximum number, ca. 627.5 eggs at 21.7℃. Adult oviposition models including aging rate, age-specific survival rate, age-specific cumulative oviposition, and temperature-dependent fecundity were constructed. Temperature-dependent development models and adult oviposition models would be useful components to understand the population dynamics of P. brassicae and to establish the strategy of integrated pest management in cruciferous crops.

Effects of Nitrogen Application Levels on Grain Yield and Yield-related Traits of Rice Genetic Resources (질소비료 시비 수준이 벼의 수량 및 수량구성요소에 미치는 영향)

  • Tae-Heon Kim;Suk-Man Kim
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.68 no.4
    • /
    • pp.276-284
    • /
    • 2023
  • Nitrogen is a major and essential macronutrient for plant growth and development. However, excessive nitrogen application can lead to ecological pollution or greenhouse gas emissions, consequently resulting in climate change. In this study, we used 153 genetic resources of rice to evaluate the effects of the levels of nitrogen application on grain yield and yield-related traits. Significant differences were noted in the yield and yield-related traits of genetic resources between two nitrogen application levels, namely, 4.5 kg/10a (NN: normal nitrogen condition) and 9.0 kg/10a (LN: low-nitrogen condition). Among the tested traits, days to heading (DTH), clum length (CL), grain yield per plant (GYP), number of panicles per plant (NPP), and number of spikelets per panicle (NSP) decreased by 1.8 to 17.9% when the nitrogen application levels decreased from NN to LN. The 1,000-grain weight (TWG) and percentage of ripened grain (PRG) increased by 2.6 to 11.2% under these conditions. Based on nitrogen application levels, two-way analysis of variance (ANOVA) demonstrated significant differences in GYP, NPP, and PRG but not in NSP and TGW. NPP exhibited negative correlations with NSP (-0.44) and TGW (-0.44), and TGW displayed a negative correlation with PRG (-0.34), whereas, GYP exhibited a positive correlation with PRG (0.37) and NSP (0.38). A similar pattern was recorded under the LN condition. NPP, TGW, and PRG were clustered as PA (principle axis) 1 under the LN condition by factor analysis. NSP and GYP were clustered as PA (principle axis) 2. These results demonstrated NPP and NSP as the primary factors contributing to the decrease in grain yield under LN conditions. In conclusion, we selected eight genetic resources that exhibited higher GYP under both NN and LN conditions with higher NPP or NSP. These genetic resources can be considered valuable breeding materials for the adaptation of plants to nitrogen deficiency.

Effects of open-field summer warming and drought on the abnormal shoot growth of Pinus densiflora seedlings (실외 여름철 온난화 및 가뭄 처리가 소나무 묘목의 이상생장 반응에 미치는 영향)

  • Heejae Jo;Jieun Park;Jinseo Kim;Gwang-Jung Kim;Gaeun Kim;Hyung-Sub Kim;Yowhan Son
    • Korean Journal of Environmental Biology
    • /
    • v.41 no.4
    • /
    • pp.473-481
    • /
    • 2023
  • Pinus densiflora is a fixed-growth coniferous species that elongates its shoot once a year and finishes growing in early summer. However, it may produce additional shoots in the same year in response to external stimuli, called abnormal shoot growth. This study investigated the effects of open-field summer warming and drought on the abnormal shoot growth of P. densiflora seedlings. In March 2022, two factorial combinations were constructed, including two temperature treatments (control and 4℃ increase) and two precipitation treatments (control and drought), with five replicates for each combination. The temperature treatment was performed for 87 days from May 14 to August 8, 2022, and the precipitation treatment was performed for 33 days from May 14 to June 15, blocking 100% of the ambient rainfall. The abnormal shoot occurrence rate and leaf unfolding stages were measured in November, and the shoot and root collar diameter growth rates were calculated by comparing the seedling height and root collar diameter measured in August(after the cessation of treatment) and October(after the end of growing period) with the initial values (i.e., May 2022). The abnormal shoot occurrence rate significantly increased under the warming treatment, showing a 410.6% increase in the warming plots (38.4%) compared to the control plots (7.5%). There was no significant difference in the shoot and root collar diameter growth rate regarding warming and drought treatments. Abnormal shoots may have been affected by high temperatures by inducing early transition to the next ontogenetic stage.

Analysis of Sustainable Management Factors in County Parks Based on the Sustainability Evaluation Framework of Korea Nature Parks - Focus on the 11 County Parks in Gyeongsangnam-do - (자연공원 지속가능성평가에 기반한 군립공원 지속가능성 영향요인 분석 - 경남권역 11개소 군립공원을 대상으로 -)

  • Hong, Sukhwan;Ahn, Rosa;Tian, Wanting;Heo, Hagyoung;Pak, Junhou
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.48 no.3
    • /
    • pp.12-21
    • /
    • 2020
  • This study aims to implement the Sustainability Evaluation Framework of Korea Natural Parks to county parks in Gyeongsangnam-do, and to review the performance status of management effectiveness evaluation (MEE) and identify factors that influence the improvement of management effectiveness in protected areas. County park officers evaluated current management using this framework that was developed based on the MEE framework designed by the Korean Ministry of Environment. Among the principal values of county parks, 'natural and ecological' is indicated as the most important, followed by 'cultural and historic value' and 'leisure and recreation'. Natural disasters and climate change, visitor impact-inappropriate visitor behavior are indicated as current threats, and three county parks administrators viewed that there was no particular threat to their park. According to MEE results, the most effective management fields were 'State of cultural and historic value', 'State of leisure and recreational value', 'Current state of principal value'. The comparatively weaker fields were 'Threatened species management', 'Invasive species management', 'Management monitoring and evaluation'. The effects of sustainable management on county parks were analyzed through a regression analysis, and the influence of management factors reveal 'Annual budget', will impact attaining higher management scores. This study presents the current management information about county parks and provides support for the basis for the planning of county parks in Korea, suggesting the influencing factor.

Growth and Physiological Characteristics of Pinus densiflora Seedlings in Response to Open-field Experimental Warming using the Infrared Lamp (적외선등을 이용한 실외 실험적 온난화 처리가 소나무 묘목의 생장과 생리적 특성에 미치는 영향)

  • Lee, Sun Jeoung;Han, Saerom;Yoon, Tae Kyung;Han, Seung Hyun;Jung, Yejee;Yun, Soon Jin;Son, Yowhan
    • Journal of Korean Society of Forest Science
    • /
    • v.102 no.4
    • /
    • pp.522-529
    • /
    • 2013
  • Climate change will affect the physiological traits and growth of forest trees. This study was conducted to investigate the effects of an experimental warming on growth and physiological characteristics of Pinus densiflora S. et Z. seedlings. One-year-old P. densiflora seedlings were planted in control and warmed plots in April 2010. The air temperature of warmed plots was increased by $3^{\circ}C$ using infrared lamps from November 2010. We measured shoot height, root collar diameter, above and below ground biomass, chlorophyll contents and leaf nitrogen concentration from March 2011 to March 2013. Seedling height and root collar diameter showed no significant difference between warmed and control plots except for root collar diameter measured in June 2012. Seedling leaf biomass was lower in the warmed ($23.94{\pm}2.10g$) than in the control ($26.08{\pm}1.72g$) plots in 2013. Shoot to root ratio (S/R ratio) was lower in the warmed ($1.09{\pm}0.07$) than in the control ($1.31{\pm}0.10$) plots in 2013. Leaf nitrogen concentrations and chlorophyll contents were not significantly different between warmed and control plots except for leaf nitrogen concentration in 2011. Leaf C/N ratio was increased in 2012 under the warming treatment. Low growth and S/R ratio in warmed plots might be related to the higher temperature and water stress. In the future, the below-ground carbon allocation of P. densiflora might be increased by global warming due to temperature and water stress.

Effects of NaCl Concentration on Mycelial Growth and Fruiting Body Yields of Oyster Mushrooms, Pleurotus spp. (NaCl의 농도가 병재배 느타리버섯 균사생장 및 자실체수량에 미치는 영향)

  • Jhune, Chang-Sung;Sul, Hwa-Jin;Kong, Won-Sik;You, Young-Bok;Kim, Jin-Ho;Cheong, Jong-Chun;Lee, Chan-Jung
    • Journal of Mushroom
    • /
    • v.7 no.4
    • /
    • pp.173-181
    • /
    • 2009
  • These studies were investigated for effect of concentration of sodium chloride on occurrence and growth of fruitbody in oyster mushroom, Pleurotus ostreatus. When the mycelia were inoculated and cultured on the PDA plate added with the different concentrations of sodium chloride, the growth of them were not affected at the concentration of 0.5%, started to decrease at 1.0% as compared with the PDA plate without sodium chloride, and they did not grow at 5.0%. When tested at the column filled with sawdust, the tendency was similar, but the decreasing rate of mycelial growth was gentle. In sawdust bottle cultivation sprinkled with the different concentration of sodium chloride solution at the different stage, the productivity and quality of fruitbody started to decrease at 3.0% of the solution and the yield at the treatment of 10.0% solution was only 47% of that in non-treated bottles. Treated at the different stages of mushroom development, treatment just after mushroom sprout did not show any different from that just after scraping spawn from the complete grown bottles. The sprinkle treatment at this stage looked better than that of the soaking with the solution before mushroom sprout. The yield at this treatment with 10% solution showed little damage with that of 90% of non-treated bottle. Sprinkle treatment during mushroom growth stage did not affect and showed almost same to non-treated bottle except the treatment with 10.0% solution. The treatment of this stage showed better results of growing characters than the treatment after and before mushroom sprouting even 10% solution. Morphological characteristics of oyster mushroom do not distinguish to treatment of different stage and concentration of sodium chloride solution. The analyzing data of quality on underwater usually used for oyster mushroom in Inchon, Yeongjong and Kanghwa area showed over-concentration to the standard for edible water and agricultural water. But it was not confirmed whether this water quality could affect to mushroom cultivation.

  • PDF

The Effect of Polypropylene Mulching Method on Growth of Quercus glauca Thunb. Seedling and Weed Treatments (부직포 멀칭 방식에 따른 종가시나무 묘목의 생장과 제초에 미치는 영향)

  • Sung, Chang-Hyun;Yoon, Jun-Hyuck;Jin, Eon-Ju;Bae, Eun-Ji
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.48 no.5
    • /
    • pp.59-66
    • /
    • 2020
  • Recently, cultivation and management technologies have been needed to adapt due to climate change, which is causing abnormal weather conditions. One technique is to increase the utilization of evergreen broad-leaved species with high ornamental value. A total of five treatments were installed (1m×22.5m), including 60g/㎡ and 80g/㎡ using two types mulching material with an overlapping and hole-drilling mulching method and these were compared to un-mulching treatment a total of planted 92㎡ attheWol-aTestSiteForestattheForestforBiomaterialsResearchCenterinJinju-si, Gyeongsangnam-dofor 10monthsusing3-years-oldQuercusglaucaThunb. In comparison with the control site, the 60g/㎡ overlapping method was about 1.9 times higher than the root collar diameter, but there was no statistical significance between the treatments. Healthy seedlings were found to meet these conditions due to high biomass values and below and T/R ratios of 3.0 or lower and H/D ratios of 7.0 or lower. Comparing the values of LWR, SWR, and RWR, which can be evaluated for seedling due to the mulching treatments, as compared to the control, the growth of the ground areas including leaves and stems was enhanced, but the growth of the underground areas containing roots tended to have high control values. Based on this, the SQI value, which can be evaluated for the comprehensive quality of seedlings, was found to be significantly different between the control site and the mulching treatment sites, confirming that the growth and growth improvement effects were achieved with mulching treatments. The chlorophyll content analysis showed that there was a significant difference from the control site, and it was judged that weed generation in the control acted as an environmental stress, causing a decrease in chlorophyll content. It was found that the overlapping 80g/㎡ of polypropylene mulching material generated about 4 times fewer weeds than the control, and the manpower required for the mulching test field and weeding were equal at 3.3 people/100㎡/1 day. Mulching treatments have demonstrated a significant difference in the promotion of growth and quality of the seedlings and are judged as an alternative that can reduce the economic burden incurred by the purchase of the supplies and the manpower required to weed forestry plantations.

Effects of Active MA Mini-packaging on Shelf-life Maintenance during Marketing of Perilla Leaves (깻잎의 active MA 소포장이 유통기간 중 신선도 유지에 미치는 영향)

  • Jeong, Cheon-Soon;Um, Gi-Jeung;Park, Jong-Nam
    • Horticultural Science & Technology
    • /
    • v.28 no.6
    • /
    • pp.980-984
    • /
    • 2010
  • Research regarding respiration rate, off-flavor related material and freshness maintenance effect of active MA mini-packaging on perilla leaves has been carried in this study. Respiration rate was highly maintained at high oxygen treatments ($CO_2:O_2:N_2$=0:30:70 and 0:50:50), higher than non-treatment and low oxygen treatments (6:2:92, 0:10:90) during the storage period, and ethylene production was relatively higher. However, off-flavor related materials, acetaldehyde and ethanol production was noticeably low. Weight losses of non-treatment and low-oxygen treatment were about 1.8 and 1.4%, respectively. At the fifth day of storage there was no weight loss. Ascorbic acid content was 13.3 mg/100 g F.W. at the first day of storage. At the third day of storage non-treatment showed the lowest value of ascorbic acid, 8.8 mg/100 g F.W. Ascorbic acid content of active MA treatment gradually decreased without a striking difference as the storage day extended. Chlorophyll content was the lowest at the fifth day of storage with non-treatment, 47.5 (SPAD-502 unit) while the active MA treatment maintained high level of chlorophyll content, 53.0. Sensory evaluation (vision) showed that marketability gradually decreased but was maintained in high oxygen treatments (0:30:70 and 0:50:50), even at the fifth day of storage. Occurrence of off-flavor in non-treatment at the fifth day of storage was extremely low, 2.6; whereas high in high oxygen treatment, 3.4. Active MA packaging maintained freshness two more days at room temperature (about $27^{\circ}C$).

Emission Rate of Greenhouse Gases from Bedding Materials of Cowshed Floor: Lab-scale simulation study (우사깔짚에서 발생되는 온실가스 배출량 산정: 모의 실험결과)

  • Cho, Won Sil;Lee, Jin Eui;Park, Kyu Hyun;Kim, Jeong Dae;Ra, Chang Six
    • Journal of Animal Science and Technology
    • /
    • v.55 no.1
    • /
    • pp.67-74
    • /
    • 2013
  • To know the emission amount of greenhouse gases from bedding materials of cowshed floor, the emission rates of methane ($CH_4$) and nitrous oxide ($N_2O$) gases from a simulated cowshed floor (SCF) with sawdust that manure loading rate into the bedding material could be accurately controlled were assessed in this study. The manure loading rates of Korean beef and Holstein dairy cattle into the SCF of $0.258m^2$ surface area with 10 to 15 cm height sawdust were $1.586kg/m^2/d$ and $3.588kg/m^2/d$, respectively, and those were calculated on the basis of "Standard model for sustainable livestock" and "Data for excretion amount of manure from livestock". All experiments were done in triplicates in three different seasons (May to July, Sep. to Nov., and Feb. to Apr.) using 12 SCFs. The effects of bedding material thickness on $CH_4$ and $N_2O$ emission from SCFs for both Korean beef cattle and Holstein dairy cattle were not statistically significant (p<0.05). Emission amount of $CH_4$ and $N_2O$ per square meter of SCF for Holstein dairy cattle was 7.5 and 1.2 times higher than that of Korean beef cattle, respectively. The yearly $CH_4$ amount per head was 17.7 times higher in Holstein dairy cattle, obtaining 130.4 g/head/year from SCF for Holstein dairy cattle and 7.4 g/head/year from SCF for Korean beef cattle, and $N_2O$ was also 3.8 times higher in Holstein dairy cattle (3,267 g/head/year in Korean beef cattle and 14,719 g/head/year in Holstein dairy cattle). However, the $N_2O$-N per loaded nitrogen into SCF was higher in Korean beef cattle, having 0.2148 and 0.1632 kg $N_2O$-N/kg N in Korean beef cattle and Holstein dairy cattle, respectively, and those values were 3.07 and 2.33 times higher than that of Intergovernmental Panel on Climate Change (IPCC) 2006 guideline (GL) (0.07 kg $N_2O$-N/kg N).

Effect of Korean Fermented Food Extracts and Bacteria Isolated from the Extracts for the Control of Rice Seed-borne Fungal Diseases (국산 발효식품 추출물과 발효식품유래 미생물을 활용한 벼 종자전염성 진균병 방제)

  • Kim, Yong-Ki;Hong, Sung-Jun;Shim, Chang-Ki;Kim, Min-Jeong;Lee, Min-Ho;Park, Jong-Ho;Han, Eun-Jung;Choi, Eun-Jung;Bae, Soo-Il;Jee, Hyeong-Jin
    • The Korean Journal of Pesticide Science
    • /
    • v.18 no.4
    • /
    • pp.383-395
    • /
    • 2014
  • When we investigated seed infestation by fungal pathogens from 51 varieties in 9 crops, the contamination rate of rice and sesame seeds was high. Therefore, to control seed-borne diseases, we obtained extracts from commercial products of Kimchi, Gochujang, Doenjang, Ganjang, Makgeolli and Tohajut and their suppressive effects against seed-borne diseases were studied. In addition, bacterial strains were screened to control rice seed-borne diseases in vitro and in vivo. Among forty food extracts, eleven food-extracts suppressed incidence of seedling rots in vitro and five food extracts increased 8-33% of healthy seedling in the greenhouse. Among 218 isolates from 40 fermented foods, 43 isolates showed high antifungal activity against seven fungal pathogens. When we tested 43 isolates for the reduction of rice seed borne disease, 32 isolates were able to reduce the rice seed borne disease. Among 32 isolates, 17 isolates reduced significantly seedling rot and increased healthy seedlings, the other isolates except for Kc4-2 and Mkl 2-2 increased shoot emergence and the percentage of healthy plants. Thirty isolates with high antifungal activity and suppressive effect against rice seedling rots were identified by 16S rRNA sequencing. Twenty one of thirty isolates were identified as Bacillus spp. Three isolates from Makgeolli were identified as Saccharomyces cerevisiae. B. amyloliquifaciens were isolated from six Korean traditional fermented foods except for Ganjang. B. amyloliquifaciens were majority in the effective bacterial population of Gochujang and Jutgal. Relatively diverse Bacillus species including B. subtilis, B. pumilus, and B. amyloliquificiens were isolated from Kimchi. The selected effective microorganisms from Korean fermented foods founded to be effective for controlling seed-borne diseases of rice in vitro and in the greenhouse. We think that Korean fermented foods and their useful microorganisms can be used as biocontrol agents for suppressing rice seed-borne diseases based on above described results.